This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a Cartesian product. Uses fewer axioms than elxp . (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxpi | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 = 〈 𝑥 , 𝑦 〉 ↔ 𝐴 = 〈 𝑥 , 𝑦 〉 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
| 3 | 2 | 2exbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
| 4 | df-xp | ⊢ ( 𝐵 × 𝐶 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) } | |
| 5 | df-opab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) } = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) } | |
| 6 | 4 5 | eqtri | ⊢ ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) } |
| 7 | 3 6 | elab2g | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
| 8 | 7 | ibi | ⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ∃ 𝑥 ∃ 𝑦 ( 𝐴 = 〈 𝑥 , 𝑦 〉 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |