This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the bijection of xpcomf1o swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpcomf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) | |
| xpcomco.1 | ⊢ 𝐺 = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐴 ↦ 𝐶 ) | ||
| Assertion | xpcomco | ⊢ ( 𝐺 ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) | |
| 2 | xpcomco.1 | ⊢ 𝐺 = ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐴 ↦ 𝐶 ) | |
| 3 | 1 | xpcomf1o | ⊢ 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) |
| 4 | f1ofun | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) → Fun 𝐹 ) | |
| 5 | funbrfv2b | ⊢ ( Fun 𝐹 → ( 𝑢 𝐹 𝑤 ↔ ( 𝑢 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑢 ) = 𝑤 ) ) ) | |
| 6 | 3 4 5 | mp2b | ⊢ ( 𝑢 𝐹 𝑤 ↔ ( 𝑢 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑢 ) = 𝑤 ) ) |
| 7 | ancom | ⊢ ( ( 𝑢 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑢 ) = 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑢 ) = 𝑤 ∧ 𝑢 ∈ dom 𝐹 ) ) | |
| 8 | eqcom | ⊢ ( ( 𝐹 ‘ 𝑢 ) = 𝑤 ↔ 𝑤 = ( 𝐹 ‘ 𝑢 ) ) | |
| 9 | f1odm | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) → dom 𝐹 = ( 𝐴 × 𝐵 ) ) | |
| 10 | 3 9 | ax-mp | ⊢ dom 𝐹 = ( 𝐴 × 𝐵 ) |
| 11 | 10 | eleq2i | ⊢ ( 𝑢 ∈ dom 𝐹 ↔ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) |
| 12 | 8 11 | anbi12i | ⊢ ( ( ( 𝐹 ‘ 𝑢 ) = 𝑤 ∧ 𝑢 ∈ dom 𝐹 ) ↔ ( 𝑤 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 13 | 6 7 12 | 3bitri | ⊢ ( 𝑢 𝐹 𝑤 ↔ ( 𝑤 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) ) |
| 14 | 13 | anbi1i | ⊢ ( ( 𝑢 𝐹 𝑤 ∧ 𝑤 𝐺 𝑣 ) ↔ ( ( 𝑤 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝑤 𝐺 𝑣 ) ) |
| 15 | anass | ⊢ ( ( ( 𝑤 = ( 𝐹 ‘ 𝑢 ) ∧ 𝑢 ∈ ( 𝐴 × 𝐵 ) ) ∧ 𝑤 𝐺 𝑣 ) ↔ ( 𝑤 = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑤 𝐺 𝑣 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ( 𝑢 𝐹 𝑤 ∧ 𝑤 𝐺 𝑣 ) ↔ ( 𝑤 = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑤 𝐺 𝑣 ) ) ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑤 ( 𝑢 𝐹 𝑤 ∧ 𝑤 𝐺 𝑣 ) ↔ ∃ 𝑤 ( 𝑤 = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑤 𝐺 𝑣 ) ) ) |
| 18 | fvex | ⊢ ( 𝐹 ‘ 𝑢 ) ∈ V | |
| 19 | breq1 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑢 ) → ( 𝑤 𝐺 𝑣 ↔ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ) | |
| 20 | 19 | anbi2d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑢 ) → ( ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑤 𝐺 𝑣 ) ↔ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ) ) |
| 21 | 18 20 | ceqsexv | ⊢ ( ∃ 𝑤 ( 𝑤 = ( 𝐹 ‘ 𝑢 ) ∧ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑤 𝐺 𝑣 ) ) ↔ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ) |
| 22 | elxp | ⊢ ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) | |
| 23 | 22 | anbi1i | ⊢ ( ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ( ∃ 𝑧 ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ) |
| 24 | nfcv | ⊢ Ⅎ 𝑧 ( 𝐹 ‘ 𝑢 ) | |
| 25 | nfmpo2 | ⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐴 ↦ 𝐶 ) | |
| 26 | 2 25 | nfcxfr | ⊢ Ⅎ 𝑧 𝐺 |
| 27 | nfcv | ⊢ Ⅎ 𝑧 𝑣 | |
| 28 | 24 26 27 | nfbr | ⊢ Ⅎ 𝑧 ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 |
| 29 | 28 | 19.41 | ⊢ ( ∃ 𝑧 ( ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ( ∃ 𝑧 ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ) |
| 30 | nfcv | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑢 ) | |
| 31 | nfmpo1 | ⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐴 ↦ 𝐶 ) | |
| 32 | 2 31 | nfcxfr | ⊢ Ⅎ 𝑦 𝐺 |
| 33 | nfcv | ⊢ Ⅎ 𝑦 𝑣 | |
| 34 | 30 32 33 | nfbr | ⊢ Ⅎ 𝑦 ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 |
| 35 | 34 | 19.41 | ⊢ ( ∃ 𝑦 ( ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ( ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ) |
| 36 | anass | ⊢ ( ( ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ) ) | |
| 37 | fveq2 | ⊢ ( 𝑢 = 〈 𝑧 , 𝑦 〉 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 〈 𝑧 , 𝑦 〉 ) ) | |
| 38 | opelxpi | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑧 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ) | |
| 39 | sneq | ⊢ ( 𝑥 = 〈 𝑧 , 𝑦 〉 → { 𝑥 } = { 〈 𝑧 , 𝑦 〉 } ) | |
| 40 | 39 | cnveqd | ⊢ ( 𝑥 = 〈 𝑧 , 𝑦 〉 → ◡ { 𝑥 } = ◡ { 〈 𝑧 , 𝑦 〉 } ) |
| 41 | 40 | unieqd | ⊢ ( 𝑥 = 〈 𝑧 , 𝑦 〉 → ∪ ◡ { 𝑥 } = ∪ ◡ { 〈 𝑧 , 𝑦 〉 } ) |
| 42 | opswap | ⊢ ∪ ◡ { 〈 𝑧 , 𝑦 〉 } = 〈 𝑦 , 𝑧 〉 | |
| 43 | 41 42 | eqtrdi | ⊢ ( 𝑥 = 〈 𝑧 , 𝑦 〉 → ∪ ◡ { 𝑥 } = 〈 𝑦 , 𝑧 〉 ) |
| 44 | opex | ⊢ 〈 𝑦 , 𝑧 〉 ∈ V | |
| 45 | 43 1 44 | fvmpt | ⊢ ( 〈 𝑧 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) → ( 𝐹 ‘ 〈 𝑧 , 𝑦 〉 ) = 〈 𝑦 , 𝑧 〉 ) |
| 46 | 38 45 | syl | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐹 ‘ 〈 𝑧 , 𝑦 〉 ) = 〈 𝑦 , 𝑧 〉 ) |
| 47 | 37 46 | sylan9eq | ⊢ ( ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑢 ) = 〈 𝑦 , 𝑧 〉 ) |
| 48 | 47 | breq1d | ⊢ ( ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ↔ 〈 𝑦 , 𝑧 〉 𝐺 𝑣 ) ) |
| 49 | df-br | ⊢ ( 〈 𝑦 , 𝑧 〉 𝐺 𝑣 ↔ 〈 〈 𝑦 , 𝑧 〉 , 𝑣 〉 ∈ 𝐺 ) | |
| 50 | df-mpo | ⊢ ( 𝑦 ∈ 𝐵 , 𝑧 ∈ 𝐴 ↦ 𝐶 ) = { 〈 〈 𝑦 , 𝑧 〉 , 𝑣 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 = 𝐶 ) } | |
| 51 | 2 50 | eqtri | ⊢ 𝐺 = { 〈 〈 𝑦 , 𝑧 〉 , 𝑣 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 = 𝐶 ) } |
| 52 | 51 | eleq2i | ⊢ ( 〈 〈 𝑦 , 𝑧 〉 , 𝑣 〉 ∈ 𝐺 ↔ 〈 〈 𝑦 , 𝑧 〉 , 𝑣 〉 ∈ { 〈 〈 𝑦 , 𝑧 〉 , 𝑣 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 = 𝐶 ) } ) |
| 53 | oprabidw | ⊢ ( 〈 〈 𝑦 , 𝑧 〉 , 𝑣 〉 ∈ { 〈 〈 𝑦 , 𝑧 〉 , 𝑣 〉 ∣ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 = 𝐶 ) } ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 = 𝐶 ) ) | |
| 54 | 49 52 53 | 3bitri | ⊢ ( 〈 𝑦 , 𝑧 〉 𝐺 𝑣 ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑣 = 𝐶 ) ) |
| 55 | 54 | baib | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ) → ( 〈 𝑦 , 𝑧 〉 𝐺 𝑣 ↔ 𝑣 = 𝐶 ) ) |
| 56 | 55 | ancoms | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 〈 𝑦 , 𝑧 〉 𝐺 𝑣 ↔ 𝑣 = 𝐶 ) ) |
| 57 | 56 | adantl | ⊢ ( ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( 〈 𝑦 , 𝑧 〉 𝐺 𝑣 ↔ 𝑣 = 𝐶 ) ) |
| 58 | 48 57 | bitrd | ⊢ ( ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ↔ 𝑣 = 𝐶 ) ) |
| 59 | 58 | pm5.32da | ⊢ ( 𝑢 = 〈 𝑧 , 𝑦 〉 → ( ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) ) |
| 60 | 59 | pm5.32i | ⊢ ( ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ) ↔ ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) ) |
| 61 | 36 60 | bitri | ⊢ ( ( ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) ) |
| 62 | 61 | exbii | ⊢ ( ∃ 𝑦 ( ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) ) |
| 63 | 35 62 | bitr3i | ⊢ ( ( ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) ) |
| 64 | 63 | exbii | ⊢ ( ∃ 𝑧 ( ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) ) |
| 65 | 23 29 64 | 3bitr2i | ⊢ ( ( 𝑢 ∈ ( 𝐴 × 𝐵 ) ∧ ( 𝐹 ‘ 𝑢 ) 𝐺 𝑣 ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) ) |
| 66 | 17 21 65 | 3bitri | ⊢ ( ∃ 𝑤 ( 𝑢 𝐹 𝑤 ∧ 𝑤 𝐺 𝑣 ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) ) |
| 67 | 66 | opabbii | ⊢ { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑤 ( 𝑢 𝐹 𝑤 ∧ 𝑤 𝐺 𝑣 ) } = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑧 ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) } |
| 68 | df-co | ⊢ ( 𝐺 ∘ 𝐹 ) = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑤 ( 𝑢 𝐹 𝑤 ∧ 𝑤 𝐺 𝑣 ) } | |
| 69 | df-mpo | ⊢ ( 𝑧 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 〈 𝑧 , 𝑦 〉 , 𝑣 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) } | |
| 70 | dfoprab2 | ⊢ { 〈 〈 𝑧 , 𝑦 〉 , 𝑣 〉 ∣ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) } = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑧 ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) } | |
| 71 | 69 70 | eqtri | ⊢ ( 𝑧 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = { 〈 𝑢 , 𝑣 〉 ∣ ∃ 𝑧 ∃ 𝑦 ( 𝑢 = 〈 𝑧 , 𝑦 〉 ∧ ( ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑣 = 𝐶 ) ) } |
| 72 | 67 68 71 | 3eqtr4i | ⊢ ( 𝐺 ∘ 𝐹 ) = ( 𝑧 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |