This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical bijection from ( A X. B ) to ( B X. A ) . (Contributed by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpcomf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) | |
| Assertion | xpcomf1o | ⊢ 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomf1o.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) | |
| 2 | relxp | ⊢ Rel ( 𝐴 × 𝐵 ) | |
| 3 | cnvf1o | ⊢ ( Rel ( 𝐴 × 𝐵 ) → ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ◡ ( 𝐴 × 𝐵 ) ) | |
| 4 | 2 3 | ax-mp | ⊢ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ◡ ( 𝐴 × 𝐵 ) |
| 5 | f1oeq1 | ⊢ ( 𝐹 = ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) → ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ◡ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ◡ ( 𝐴 × 𝐵 ) ) ) | |
| 6 | 1 5 | ax-mp | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ◡ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↦ ∪ ◡ { 𝑥 } ) : ( 𝐴 × 𝐵 ) –1-1-onto→ ◡ ( 𝐴 × 𝐵 ) ) |
| 7 | 4 6 | mpbir | ⊢ 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ◡ ( 𝐴 × 𝐵 ) |
| 8 | cnvxp | ⊢ ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) | |
| 9 | f1oeq3 | ⊢ ( ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) → ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ◡ ( 𝐴 × 𝐵 ) ↔ 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ◡ ( 𝐴 × 𝐵 ) ↔ 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) ) |
| 11 | 7 10 | mpbi | ⊢ 𝐹 : ( 𝐴 × 𝐵 ) –1-1-onto→ ( 𝐵 × 𝐴 ) |