This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the composition of two classes. Definition 6.6(3) of TakeutiZaring p. 24. For example, ( ( exp o. cos )0 ) =e ( ex-co ) because ( cos0 ) = 1 (see cos0 ) and ( exp1 ) = e (see df-e ). Note that Definition 7 of Suppes p. 63 reverses A and B , uses /. instead of o. , and calls the operation "relative product". (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-co | ⊢ ( 𝐴 ∘ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cB | ⊢ 𝐵 | |
| 2 | 0 1 | ccom | ⊢ ( 𝐴 ∘ 𝐵 ) |
| 3 | vx | ⊢ 𝑥 | |
| 4 | vy | ⊢ 𝑦 | |
| 5 | vz | ⊢ 𝑧 | |
| 6 | 3 | cv | ⊢ 𝑥 |
| 7 | 5 | cv | ⊢ 𝑧 |
| 8 | 6 7 1 | wbr | ⊢ 𝑥 𝐵 𝑧 |
| 9 | 4 | cv | ⊢ 𝑦 |
| 10 | 7 9 0 | wbr | ⊢ 𝑧 𝐴 𝑦 |
| 11 | 8 10 | wa | ⊢ ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) |
| 12 | 11 5 | wex | ⊢ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) |
| 13 | 12 3 4 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) } |
| 14 | 2 13 | wceq | ⊢ ( 𝐴 ∘ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) } |