This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the bijection of xpcomf1o swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpcomf1o.1 | |- F = ( x e. ( A X. B ) |-> U. `' { x } ) |
|
| xpcomco.1 | |- G = ( y e. B , z e. A |-> C ) |
||
| Assertion | xpcomco | |- ( G o. F ) = ( z e. A , y e. B |-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpcomf1o.1 | |- F = ( x e. ( A X. B ) |-> U. `' { x } ) |
|
| 2 | xpcomco.1 | |- G = ( y e. B , z e. A |-> C ) |
|
| 3 | 1 | xpcomf1o | |- F : ( A X. B ) -1-1-onto-> ( B X. A ) |
| 4 | f1ofun | |- ( F : ( A X. B ) -1-1-onto-> ( B X. A ) -> Fun F ) |
|
| 5 | funbrfv2b | |- ( Fun F -> ( u F w <-> ( u e. dom F /\ ( F ` u ) = w ) ) ) |
|
| 6 | 3 4 5 | mp2b | |- ( u F w <-> ( u e. dom F /\ ( F ` u ) = w ) ) |
| 7 | ancom | |- ( ( u e. dom F /\ ( F ` u ) = w ) <-> ( ( F ` u ) = w /\ u e. dom F ) ) |
|
| 8 | eqcom | |- ( ( F ` u ) = w <-> w = ( F ` u ) ) |
|
| 9 | f1odm | |- ( F : ( A X. B ) -1-1-onto-> ( B X. A ) -> dom F = ( A X. B ) ) |
|
| 10 | 3 9 | ax-mp | |- dom F = ( A X. B ) |
| 11 | 10 | eleq2i | |- ( u e. dom F <-> u e. ( A X. B ) ) |
| 12 | 8 11 | anbi12i | |- ( ( ( F ` u ) = w /\ u e. dom F ) <-> ( w = ( F ` u ) /\ u e. ( A X. B ) ) ) |
| 13 | 6 7 12 | 3bitri | |- ( u F w <-> ( w = ( F ` u ) /\ u e. ( A X. B ) ) ) |
| 14 | 13 | anbi1i | |- ( ( u F w /\ w G v ) <-> ( ( w = ( F ` u ) /\ u e. ( A X. B ) ) /\ w G v ) ) |
| 15 | anass | |- ( ( ( w = ( F ` u ) /\ u e. ( A X. B ) ) /\ w G v ) <-> ( w = ( F ` u ) /\ ( u e. ( A X. B ) /\ w G v ) ) ) |
|
| 16 | 14 15 | bitri | |- ( ( u F w /\ w G v ) <-> ( w = ( F ` u ) /\ ( u e. ( A X. B ) /\ w G v ) ) ) |
| 17 | 16 | exbii | |- ( E. w ( u F w /\ w G v ) <-> E. w ( w = ( F ` u ) /\ ( u e. ( A X. B ) /\ w G v ) ) ) |
| 18 | fvex | |- ( F ` u ) e. _V |
|
| 19 | breq1 | |- ( w = ( F ` u ) -> ( w G v <-> ( F ` u ) G v ) ) |
|
| 20 | 19 | anbi2d | |- ( w = ( F ` u ) -> ( ( u e. ( A X. B ) /\ w G v ) <-> ( u e. ( A X. B ) /\ ( F ` u ) G v ) ) ) |
| 21 | 18 20 | ceqsexv | |- ( E. w ( w = ( F ` u ) /\ ( u e. ( A X. B ) /\ w G v ) ) <-> ( u e. ( A X. B ) /\ ( F ` u ) G v ) ) |
| 22 | elxp | |- ( u e. ( A X. B ) <-> E. z E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) ) |
|
| 23 | 22 | anbi1i | |- ( ( u e. ( A X. B ) /\ ( F ` u ) G v ) <-> ( E. z E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) ) |
| 24 | nfcv | |- F/_ z ( F ` u ) |
|
| 25 | nfmpo2 | |- F/_ z ( y e. B , z e. A |-> C ) |
|
| 26 | 2 25 | nfcxfr | |- F/_ z G |
| 27 | nfcv | |- F/_ z v |
|
| 28 | 24 26 27 | nfbr | |- F/ z ( F ` u ) G v |
| 29 | 28 | 19.41 | |- ( E. z ( E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> ( E. z E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) ) |
| 30 | nfcv | |- F/_ y ( F ` u ) |
|
| 31 | nfmpo1 | |- F/_ y ( y e. B , z e. A |-> C ) |
|
| 32 | 2 31 | nfcxfr | |- F/_ y G |
| 33 | nfcv | |- F/_ y v |
|
| 34 | 30 32 33 | nfbr | |- F/ y ( F ` u ) G v |
| 35 | 34 | 19.41 | |- ( E. y ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> ( E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) ) |
| 36 | anass | |- ( ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ ( F ` u ) G v ) ) ) |
|
| 37 | fveq2 | |- ( u = <. z , y >. -> ( F ` u ) = ( F ` <. z , y >. ) ) |
|
| 38 | opelxpi | |- ( ( z e. A /\ y e. B ) -> <. z , y >. e. ( A X. B ) ) |
|
| 39 | sneq | |- ( x = <. z , y >. -> { x } = { <. z , y >. } ) |
|
| 40 | 39 | cnveqd | |- ( x = <. z , y >. -> `' { x } = `' { <. z , y >. } ) |
| 41 | 40 | unieqd | |- ( x = <. z , y >. -> U. `' { x } = U. `' { <. z , y >. } ) |
| 42 | opswap | |- U. `' { <. z , y >. } = <. y , z >. |
|
| 43 | 41 42 | eqtrdi | |- ( x = <. z , y >. -> U. `' { x } = <. y , z >. ) |
| 44 | opex | |- <. y , z >. e. _V |
|
| 45 | 43 1 44 | fvmpt | |- ( <. z , y >. e. ( A X. B ) -> ( F ` <. z , y >. ) = <. y , z >. ) |
| 46 | 38 45 | syl | |- ( ( z e. A /\ y e. B ) -> ( F ` <. z , y >. ) = <. y , z >. ) |
| 47 | 37 46 | sylan9eq | |- ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) -> ( F ` u ) = <. y , z >. ) |
| 48 | 47 | breq1d | |- ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) -> ( ( F ` u ) G v <-> <. y , z >. G v ) ) |
| 49 | df-br | |- ( <. y , z >. G v <-> <. <. y , z >. , v >. e. G ) |
|
| 50 | df-mpo | |- ( y e. B , z e. A |-> C ) = { <. <. y , z >. , v >. | ( ( y e. B /\ z e. A ) /\ v = C ) } |
|
| 51 | 2 50 | eqtri | |- G = { <. <. y , z >. , v >. | ( ( y e. B /\ z e. A ) /\ v = C ) } |
| 52 | 51 | eleq2i | |- ( <. <. y , z >. , v >. e. G <-> <. <. y , z >. , v >. e. { <. <. y , z >. , v >. | ( ( y e. B /\ z e. A ) /\ v = C ) } ) |
| 53 | oprabidw | |- ( <. <. y , z >. , v >. e. { <. <. y , z >. , v >. | ( ( y e. B /\ z e. A ) /\ v = C ) } <-> ( ( y e. B /\ z e. A ) /\ v = C ) ) |
|
| 54 | 49 52 53 | 3bitri | |- ( <. y , z >. G v <-> ( ( y e. B /\ z e. A ) /\ v = C ) ) |
| 55 | 54 | baib | |- ( ( y e. B /\ z e. A ) -> ( <. y , z >. G v <-> v = C ) ) |
| 56 | 55 | ancoms | |- ( ( z e. A /\ y e. B ) -> ( <. y , z >. G v <-> v = C ) ) |
| 57 | 56 | adantl | |- ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) -> ( <. y , z >. G v <-> v = C ) ) |
| 58 | 48 57 | bitrd | |- ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) -> ( ( F ` u ) G v <-> v = C ) ) |
| 59 | 58 | pm5.32da | |- ( u = <. z , y >. -> ( ( ( z e. A /\ y e. B ) /\ ( F ` u ) G v ) <-> ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 60 | 59 | pm5.32i | |- ( ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ ( F ` u ) G v ) ) <-> ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 61 | 36 60 | bitri | |- ( ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 62 | 61 | exbii | |- ( E. y ( ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 63 | 35 62 | bitr3i | |- ( ( E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 64 | 63 | exbii | |- ( E. z ( E. y ( u = <. z , y >. /\ ( z e. A /\ y e. B ) ) /\ ( F ` u ) G v ) <-> E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 65 | 23 29 64 | 3bitr2i | |- ( ( u e. ( A X. B ) /\ ( F ` u ) G v ) <-> E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 66 | 17 21 65 | 3bitri | |- ( E. w ( u F w /\ w G v ) <-> E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) ) |
| 67 | 66 | opabbii | |- { <. u , v >. | E. w ( u F w /\ w G v ) } = { <. u , v >. | E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) } |
| 68 | df-co | |- ( G o. F ) = { <. u , v >. | E. w ( u F w /\ w G v ) } |
|
| 69 | df-mpo | |- ( z e. A , y e. B |-> C ) = { <. <. z , y >. , v >. | ( ( z e. A /\ y e. B ) /\ v = C ) } |
|
| 70 | dfoprab2 | |- { <. <. z , y >. , v >. | ( ( z e. A /\ y e. B ) /\ v = C ) } = { <. u , v >. | E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) } |
|
| 71 | 69 70 | eqtri | |- ( z e. A , y e. B |-> C ) = { <. u , v >. | E. z E. y ( u = <. z , y >. /\ ( ( z e. A /\ y e. B ) /\ v = C ) ) } |
| 72 | 67 68 71 | 3eqtr4i | |- ( G o. F ) = ( z e. A , y e. B |-> C ) |