This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of negid . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
| 2 | rexneg | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) | |
| 3 | 2 | oveq2d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = ( 𝐴 +𝑒 - 𝐴 ) ) |
| 4 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 5 | rexadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℝ ) → ( 𝐴 +𝑒 - 𝐴 ) = ( 𝐴 + - 𝐴 ) ) | |
| 6 | 4 5 | mpdan | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 - 𝐴 ) = ( 𝐴 + - 𝐴 ) ) |
| 7 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 8 | 7 | negidd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + - 𝐴 ) = 0 ) |
| 9 | 3 6 8 | 3eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
| 10 | id | ⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) | |
| 11 | xnegeq | ⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -𝑒 +∞ ) | |
| 12 | xnegpnf | ⊢ -𝑒 +∞ = -∞ | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -∞ ) |
| 14 | 10 13 | oveq12d | ⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = ( +∞ +𝑒 -∞ ) ) |
| 15 | pnfaddmnf | ⊢ ( +∞ +𝑒 -∞ ) = 0 | |
| 16 | 14 15 | eqtrdi | ⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
| 17 | id | ⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) | |
| 18 | xnegeq | ⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ ) | |
| 19 | xnegmnf | ⊢ -𝑒 -∞ = +∞ | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = +∞ ) |
| 21 | 17 20 | oveq12d | ⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = ( -∞ +𝑒 +∞ ) ) |
| 22 | mnfaddpnf | ⊢ ( -∞ +𝑒 +∞ ) = 0 | |
| 23 | 21 22 | eqtrdi | ⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
| 24 | 9 16 23 | 3jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
| 25 | 1 24 | sylbi | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |