This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of negid . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnegid | |- ( A e. RR* -> ( A +e -e A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | rexneg | |- ( A e. RR -> -e A = -u A ) |
|
| 3 | 2 | oveq2d | |- ( A e. RR -> ( A +e -e A ) = ( A +e -u A ) ) |
| 4 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 5 | rexadd | |- ( ( A e. RR /\ -u A e. RR ) -> ( A +e -u A ) = ( A + -u A ) ) |
|
| 6 | 4 5 | mpdan | |- ( A e. RR -> ( A +e -u A ) = ( A + -u A ) ) |
| 7 | recn | |- ( A e. RR -> A e. CC ) |
|
| 8 | 7 | negidd | |- ( A e. RR -> ( A + -u A ) = 0 ) |
| 9 | 3 6 8 | 3eqtrd | |- ( A e. RR -> ( A +e -e A ) = 0 ) |
| 10 | id | |- ( A = +oo -> A = +oo ) |
|
| 11 | xnegeq | |- ( A = +oo -> -e A = -e +oo ) |
|
| 12 | xnegpnf | |- -e +oo = -oo |
|
| 13 | 11 12 | eqtrdi | |- ( A = +oo -> -e A = -oo ) |
| 14 | 10 13 | oveq12d | |- ( A = +oo -> ( A +e -e A ) = ( +oo +e -oo ) ) |
| 15 | pnfaddmnf | |- ( +oo +e -oo ) = 0 |
|
| 16 | 14 15 | eqtrdi | |- ( A = +oo -> ( A +e -e A ) = 0 ) |
| 17 | id | |- ( A = -oo -> A = -oo ) |
|
| 18 | xnegeq | |- ( A = -oo -> -e A = -e -oo ) |
|
| 19 | xnegmnf | |- -e -oo = +oo |
|
| 20 | 18 19 | eqtrdi | |- ( A = -oo -> -e A = +oo ) |
| 21 | 17 20 | oveq12d | |- ( A = -oo -> ( A +e -e A ) = ( -oo +e +oo ) ) |
| 22 | mnfaddpnf | |- ( -oo +e +oo ) = 0 |
|
| 23 | 21 22 | eqtrdi | |- ( A = -oo -> ( A +e -e A ) = 0 ) |
| 24 | 9 16 23 | 3jaoi | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( A +e -e A ) = 0 ) |
| 25 | 1 24 | sylbi | |- ( A e. RR* -> ( A +e -e A ) = 0 ) |