This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mnfaddpnf | ⊢ ( -∞ +𝑒 +∞ ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 2 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 3 | xaddval | ⊢ ( ( -∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ +𝑒 +∞ ) = if ( -∞ = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( -∞ + +∞ ) ) ) ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( -∞ +𝑒 +∞ ) = if ( -∞ = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( -∞ + +∞ ) ) ) ) ) |
| 5 | mnfnepnf | ⊢ -∞ ≠ +∞ | |
| 6 | ifnefalse | ⊢ ( -∞ ≠ +∞ → if ( -∞ = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( -∞ + +∞ ) ) ) ) ) = if ( -∞ = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( -∞ + +∞ ) ) ) ) ) | |
| 7 | 5 6 | ax-mp | ⊢ if ( -∞ = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( -∞ + +∞ ) ) ) ) ) = if ( -∞ = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( -∞ + +∞ ) ) ) ) |
| 8 | eqid | ⊢ -∞ = -∞ | |
| 9 | 8 | iftruei | ⊢ if ( -∞ = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( -∞ + +∞ ) ) ) ) = if ( +∞ = +∞ , 0 , -∞ ) |
| 10 | eqid | ⊢ +∞ = +∞ | |
| 11 | 10 | iftruei | ⊢ if ( +∞ = +∞ , 0 , -∞ ) = 0 |
| 12 | 9 11 | eqtri | ⊢ if ( -∞ = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( -∞ + +∞ ) ) ) ) = 0 |
| 13 | 7 12 | eqtri | ⊢ if ( -∞ = +∞ , if ( +∞ = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( +∞ = +∞ , 0 , -∞ ) , if ( +∞ = +∞ , +∞ , if ( +∞ = -∞ , -∞ , ( -∞ + +∞ ) ) ) ) ) = 0 |
| 14 | 4 13 | eqtri | ⊢ ( -∞ +𝑒 +∞ ) = 0 |