This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec , this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +oo from each other. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xmetresbl.1 | ⊢ 𝐵 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) | |
| Assertion | xmetresbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( Met ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetresbl.1 | ⊢ 𝐵 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) | |
| 2 | simp1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 ) | |
| 4 | 1 3 | eqsstrid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝐵 ⊆ 𝑋 ) |
| 5 | xmetres2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ) |
| 7 | xmetf | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 8 | 2 7 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 9 | xpss12 | ⊢ ( ( 𝐵 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑋 ) → ( 𝐵 × 𝐵 ) ⊆ ( 𝑋 × 𝑋 ) ) | |
| 10 | 4 4 9 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐵 × 𝐵 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 11 | 8 10 | fssresd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) : ( 𝐵 × 𝐵 ) ⟶ ℝ* ) |
| 12 | 11 | ffnd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ) |
| 13 | ovres | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) |
| 15 | simpl1 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 16 | eqid | ⊢ ( ◡ 𝐷 “ ℝ ) = ( ◡ 𝐷 “ ℝ ) | |
| 17 | 16 | xmeter | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ◡ 𝐷 “ ℝ ) Er 𝑋 ) |
| 18 | 15 17 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ◡ 𝐷 “ ℝ ) Er 𝑋 ) |
| 19 | 16 | blssec | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 20 | 1 19 | eqsstrid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝐵 ⊆ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 21 | 20 | sselda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 22 | 21 | adantrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 23 | simpl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ 𝑋 ) | |
| 24 | elecg | ⊢ ( ( 𝑥 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑥 ) ) | |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑥 ) ) |
| 26 | 22 25 | mpbid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑥 ) |
| 27 | 20 | sselda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 28 | 27 | adantrl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ) |
| 29 | elecg | ⊢ ( ( 𝑦 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝑦 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑦 ) ) | |
| 30 | 28 23 29 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑦 ∈ [ 𝑃 ] ( ◡ 𝐷 “ ℝ ) ↔ 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑦 ) ) |
| 31 | 28 30 | mpbid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ( ◡ 𝐷 “ ℝ ) 𝑦 ) |
| 32 | 18 26 31 | ertr3d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ( ◡ 𝐷 “ ℝ ) 𝑦 ) |
| 33 | 16 | xmeterval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ( ◡ 𝐷 “ ℝ ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) ) |
| 34 | 15 33 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ◡ 𝐷 “ ℝ ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) ) |
| 35 | 32 34 | mpbid | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) |
| 36 | 35 | simp3d | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
| 37 | 14 36 | eqeltrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) ∈ ℝ ) |
| 38 | 37 | ralrimivva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) ∈ ℝ ) |
| 39 | ffnov | ⊢ ( ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) : ( 𝐵 × 𝐵 ) ⟶ ℝ ↔ ( ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) 𝑦 ) ∈ ℝ ) ) | |
| 40 | 12 38 39 | sylanbrc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) : ( 𝐵 × 𝐵 ) ⟶ ℝ ) |
| 41 | ismet2 | ⊢ ( ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( Met ‘ 𝐵 ) ↔ ( ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( ∞Met ‘ 𝐵 ) ∧ ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) : ( 𝐵 × 𝐵 ) ⟶ ℝ ) ) | |
| 42 | 6 40 41 | sylanbrc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝐷 ↾ ( 𝐵 × 𝐵 ) ) ∈ ( Met ‘ 𝐵 ) ) |