This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec , this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +oo from each other. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xmetresbl.1 | |- B = ( P ( ball ` D ) R ) |
|
| Assertion | xmetresbl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) e. ( Met ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetresbl.1 | |- B = ( P ( ball ` D ) R ) |
|
| 2 | simp1 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> D e. ( *Met ` X ) ) |
|
| 3 | blssm | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ X ) |
|
| 4 | 1 3 | eqsstrid | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> B C_ X ) |
| 5 | xmetres2 | |- ( ( D e. ( *Met ` X ) /\ B C_ X ) -> ( D |` ( B X. B ) ) e. ( *Met ` B ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) e. ( *Met ` B ) ) |
| 7 | xmetf | |- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 8 | 2 7 | syl | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> D : ( X X. X ) --> RR* ) |
| 9 | xpss12 | |- ( ( B C_ X /\ B C_ X ) -> ( B X. B ) C_ ( X X. X ) ) |
|
| 10 | 4 4 9 | syl2anc | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( B X. B ) C_ ( X X. X ) ) |
| 11 | 8 10 | fssresd | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) : ( B X. B ) --> RR* ) |
| 12 | 11 | ffnd | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) Fn ( B X. B ) ) |
| 13 | ovres | |- ( ( x e. B /\ y e. B ) -> ( x ( D |` ( B X. B ) ) y ) = ( x D y ) ) |
|
| 14 | 13 | adantl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x ( D |` ( B X. B ) ) y ) = ( x D y ) ) |
| 15 | simpl1 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> D e. ( *Met ` X ) ) |
|
| 16 | eqid | |- ( `' D " RR ) = ( `' D " RR ) |
|
| 17 | 16 | xmeter | |- ( D e. ( *Met ` X ) -> ( `' D " RR ) Er X ) |
| 18 | 15 17 | syl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( `' D " RR ) Er X ) |
| 19 | 16 | blssec | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) |
| 20 | 1 19 | eqsstrid | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> B C_ [ P ] ( `' D " RR ) ) |
| 21 | 20 | sselda | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ x e. B ) -> x e. [ P ] ( `' D " RR ) ) |
| 22 | 21 | adantrr | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> x e. [ P ] ( `' D " RR ) ) |
| 23 | simpl2 | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> P e. X ) |
|
| 24 | elecg | |- ( ( x e. [ P ] ( `' D " RR ) /\ P e. X ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) |
|
| 25 | 22 23 24 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) |
| 26 | 22 25 | mpbid | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> P ( `' D " RR ) x ) |
| 27 | 20 | sselda | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ y e. B ) -> y e. [ P ] ( `' D " RR ) ) |
| 28 | 27 | adantrl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> y e. [ P ] ( `' D " RR ) ) |
| 29 | elecg | |- ( ( y e. [ P ] ( `' D " RR ) /\ P e. X ) -> ( y e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) y ) ) |
|
| 30 | 28 23 29 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( y e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) y ) ) |
| 31 | 28 30 | mpbid | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> P ( `' D " RR ) y ) |
| 32 | 18 26 31 | ertr3d | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> x ( `' D " RR ) y ) |
| 33 | 16 | xmeterval | |- ( D e. ( *Met ` X ) -> ( x ( `' D " RR ) y <-> ( x e. X /\ y e. X /\ ( x D y ) e. RR ) ) ) |
| 34 | 15 33 | syl | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x ( `' D " RR ) y <-> ( x e. X /\ y e. X /\ ( x D y ) e. RR ) ) ) |
| 35 | 32 34 | mpbid | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x e. X /\ y e. X /\ ( x D y ) e. RR ) ) |
| 36 | 35 | simp3d | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x D y ) e. RR ) |
| 37 | 14 36 | eqeltrd | |- ( ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) /\ ( x e. B /\ y e. B ) ) -> ( x ( D |` ( B X. B ) ) y ) e. RR ) |
| 38 | 37 | ralrimivva | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> A. x e. B A. y e. B ( x ( D |` ( B X. B ) ) y ) e. RR ) |
| 39 | ffnov | |- ( ( D |` ( B X. B ) ) : ( B X. B ) --> RR <-> ( ( D |` ( B X. B ) ) Fn ( B X. B ) /\ A. x e. B A. y e. B ( x ( D |` ( B X. B ) ) y ) e. RR ) ) |
|
| 40 | 12 38 39 | sylanbrc | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) : ( B X. B ) --> RR ) |
| 41 | ismet2 | |- ( ( D |` ( B X. B ) ) e. ( Met ` B ) <-> ( ( D |` ( B X. B ) ) e. ( *Met ` B ) /\ ( D |` ( B X. B ) ) : ( B X. B ) --> RR ) ) |
|
| 42 | 6 40 41 | sylanbrc | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( D |` ( B X. B ) ) e. ( Met ` B ) ) |