This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn .) (Contributed by Mario Carneiro, 20-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkofvcn.1 | ⊢ 𝑋 = ∪ 𝑅 | |
| xkofvcn.2 | ⊢ 𝐹 = ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) | ||
| Assertion | xkofvcn | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝐹 ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkofvcn.1 | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | xkofvcn.2 | ⊢ 𝐹 = ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) | |
| 3 | nllytop | ⊢ ( 𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top ) | |
| 4 | eqid | ⊢ ( 𝑆 ↑ko 𝑅 ) = ( 𝑆 ↑ko 𝑅 ) | |
| 5 | 4 | xkotopon | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
| 6 | 3 5 | sylan | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
| 7 | 3 | adantr | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝑅 ∈ Top ) |
| 8 | 1 | toptopon | ⊢ ( 𝑅 ∈ Top ↔ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 9 | 7 8 | sylib | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) |
| 10 | 6 9 | cnmpt1st | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ 𝑓 ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn ( 𝑆 ↑ko 𝑅 ) ) ) |
| 11 | 6 9 | cnmpt2nd | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ 𝑥 ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn 𝑅 ) ) |
| 12 | 1on | ⊢ 1o ∈ On | |
| 13 | distopon | ⊢ ( 1o ∈ On → 𝒫 1o ∈ ( TopOn ‘ 1o ) ) | |
| 14 | 12 13 | mp1i | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝒫 1o ∈ ( TopOn ‘ 1o ) ) |
| 15 | xkoccn | ⊢ ( ( 𝒫 1o ∈ ( TopOn ‘ 1o ) ∧ 𝑅 ∈ ( TopOn ‘ 𝑋 ) ) → ( 𝑦 ∈ 𝑋 ↦ ( 1o × { 𝑦 } ) ) ∈ ( 𝑅 Cn ( 𝑅 ↑ko 𝒫 1o ) ) ) | |
| 16 | 14 9 15 | syl2anc | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑦 ∈ 𝑋 ↦ ( 1o × { 𝑦 } ) ) ∈ ( 𝑅 Cn ( 𝑅 ↑ko 𝒫 1o ) ) ) |
| 17 | sneq | ⊢ ( 𝑦 = 𝑥 → { 𝑦 } = { 𝑥 } ) | |
| 18 | 17 | xpeq2d | ⊢ ( 𝑦 = 𝑥 → ( 1o × { 𝑦 } ) = ( 1o × { 𝑥 } ) ) |
| 19 | 6 9 11 9 16 18 | cnmpt21 | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ ( 1o × { 𝑥 } ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn ( 𝑅 ↑ko 𝒫 1o ) ) ) |
| 20 | distop | ⊢ ( 1o ∈ On → 𝒫 1o ∈ Top ) | |
| 21 | 12 20 | mp1i | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝒫 1o ∈ Top ) |
| 22 | eqid | ⊢ ( 𝑅 ↑ko 𝒫 1o ) = ( 𝑅 ↑ko 𝒫 1o ) | |
| 23 | 22 | xkotopon | ⊢ ( ( 𝒫 1o ∈ Top ∧ 𝑅 ∈ Top ) → ( 𝑅 ↑ko 𝒫 1o ) ∈ ( TopOn ‘ ( 𝒫 1o Cn 𝑅 ) ) ) |
| 24 | 21 7 23 | syl2anc | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑅 ↑ko 𝒫 1o ) ∈ ( TopOn ‘ ( 𝒫 1o Cn 𝑅 ) ) ) |
| 25 | simpl | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝑅 ∈ 𝑛-Locally Comp ) | |
| 26 | simpr | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝑆 ∈ Top ) | |
| 27 | eqid | ⊢ ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) , ℎ ∈ ( 𝒫 1o Cn 𝑅 ) ↦ ( 𝑔 ∘ ℎ ) ) = ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) , ℎ ∈ ( 𝒫 1o Cn 𝑅 ) ↦ ( 𝑔 ∘ ℎ ) ) | |
| 28 | 27 | xkococn | ⊢ ( ( 𝒫 1o ∈ Top ∧ 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) , ℎ ∈ ( 𝒫 1o Cn 𝑅 ) ↦ ( 𝑔 ∘ ℎ ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t ( 𝑅 ↑ko 𝒫 1o ) ) Cn ( 𝑆 ↑ko 𝒫 1o ) ) ) |
| 29 | 21 25 26 28 | syl3anc | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑔 ∈ ( 𝑅 Cn 𝑆 ) , ℎ ∈ ( 𝒫 1o Cn 𝑅 ) ↦ ( 𝑔 ∘ ℎ ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t ( 𝑅 ↑ko 𝒫 1o ) ) Cn ( 𝑆 ↑ko 𝒫 1o ) ) ) |
| 30 | coeq1 | ⊢ ( 𝑔 = 𝑓 → ( 𝑔 ∘ ℎ ) = ( 𝑓 ∘ ℎ ) ) | |
| 31 | coeq2 | ⊢ ( ℎ = ( 1o × { 𝑥 } ) → ( 𝑓 ∘ ℎ ) = ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ) | |
| 32 | 30 31 | sylan9eq | ⊢ ( ( 𝑔 = 𝑓 ∧ ℎ = ( 1o × { 𝑥 } ) ) → ( 𝑔 ∘ ℎ ) = ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ) |
| 33 | 6 9 10 19 6 24 29 32 | cnmpt22 | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn ( 𝑆 ↑ko 𝒫 1o ) ) ) |
| 34 | eqid | ⊢ ( 𝑆 ↑ko 𝒫 1o ) = ( 𝑆 ↑ko 𝒫 1o ) | |
| 35 | 34 | xkotopon | ⊢ ( ( 𝒫 1o ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝒫 1o ) ∈ ( TopOn ‘ ( 𝒫 1o Cn 𝑆 ) ) ) |
| 36 | 21 26 35 | syl2anc | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝒫 1o ) ∈ ( TopOn ‘ ( 𝒫 1o Cn 𝑆 ) ) ) |
| 37 | 0lt1o | ⊢ ∅ ∈ 1o | |
| 38 | 37 | a1i | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ∅ ∈ 1o ) |
| 39 | unipw | ⊢ ∪ 𝒫 1o = 1o | |
| 40 | 39 | eqcomi | ⊢ 1o = ∪ 𝒫 1o |
| 41 | 40 | xkopjcn | ⊢ ( ( 𝒫 1o ∈ Top ∧ 𝑆 ∈ Top ∧ ∅ ∈ 1o ) → ( 𝑔 ∈ ( 𝒫 1o Cn 𝑆 ) ↦ ( 𝑔 ‘ ∅ ) ) ∈ ( ( 𝑆 ↑ko 𝒫 1o ) Cn 𝑆 ) ) |
| 42 | 21 26 38 41 | syl3anc | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑔 ∈ ( 𝒫 1o Cn 𝑆 ) ↦ ( 𝑔 ‘ ∅ ) ) ∈ ( ( 𝑆 ↑ko 𝒫 1o ) Cn 𝑆 ) ) |
| 43 | fveq1 | ⊢ ( 𝑔 = ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) → ( 𝑔 ‘ ∅ ) = ( ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ‘ ∅ ) ) | |
| 44 | vex | ⊢ 𝑥 ∈ V | |
| 45 | 44 | fconst | ⊢ ( 1o × { 𝑥 } ) : 1o ⟶ { 𝑥 } |
| 46 | fvco3 | ⊢ ( ( ( 1o × { 𝑥 } ) : 1o ⟶ { 𝑥 } ∧ ∅ ∈ 1o ) → ( ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ‘ ∅ ) = ( 𝑓 ‘ ( ( 1o × { 𝑥 } ) ‘ ∅ ) ) ) | |
| 47 | 45 37 46 | mp2an | ⊢ ( ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ‘ ∅ ) = ( 𝑓 ‘ ( ( 1o × { 𝑥 } ) ‘ ∅ ) ) |
| 48 | 44 | fvconst2 | ⊢ ( ∅ ∈ 1o → ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 ) |
| 49 | 37 48 | ax-mp | ⊢ ( ( 1o × { 𝑥 } ) ‘ ∅ ) = 𝑥 |
| 50 | 49 | fveq2i | ⊢ ( 𝑓 ‘ ( ( 1o × { 𝑥 } ) ‘ ∅ ) ) = ( 𝑓 ‘ 𝑥 ) |
| 51 | 47 50 | eqtri | ⊢ ( ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) ‘ ∅ ) = ( 𝑓 ‘ 𝑥 ) |
| 52 | 43 51 | eqtrdi | ⊢ ( 𝑔 = ( 𝑓 ∘ ( 1o × { 𝑥 } ) ) → ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ 𝑥 ) ) |
| 53 | 6 9 33 36 42 52 | cnmpt21 | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) , 𝑥 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑥 ) ) ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn 𝑆 ) ) |
| 54 | 2 53 | eqeltrid | ⊢ ( ( 𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ Top ) → 𝐹 ∈ ( ( ( 𝑆 ↑ko 𝑅 ) ×t 𝑅 ) Cn 𝑆 ) ) |