This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Joint continuity of the function value operation as a function on continuous function spaces. (Compare xkopjcn .) (Contributed by Mario Carneiro, 20-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xkofvcn.1 | |- X = U. R |
|
| xkofvcn.2 | |- F = ( f e. ( R Cn S ) , x e. X |-> ( f ` x ) ) |
||
| Assertion | xkofvcn | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> F e. ( ( ( S ^ko R ) tX R ) Cn S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkofvcn.1 | |- X = U. R |
|
| 2 | xkofvcn.2 | |- F = ( f e. ( R Cn S ) , x e. X |-> ( f ` x ) ) |
|
| 3 | nllytop | |- ( R e. N-Locally Comp -> R e. Top ) |
|
| 4 | eqid | |- ( S ^ko R ) = ( S ^ko R ) |
|
| 5 | 4 | xkotopon | |- ( ( R e. Top /\ S e. Top ) -> ( S ^ko R ) e. ( TopOn ` ( R Cn S ) ) ) |
| 6 | 3 5 | sylan | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( S ^ko R ) e. ( TopOn ` ( R Cn S ) ) ) |
| 7 | 3 | adantr | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> R e. Top ) |
| 8 | 1 | toptopon | |- ( R e. Top <-> R e. ( TopOn ` X ) ) |
| 9 | 7 8 | sylib | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> R e. ( TopOn ` X ) ) |
| 10 | 6 9 | cnmpt1st | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> f ) e. ( ( ( S ^ko R ) tX R ) Cn ( S ^ko R ) ) ) |
| 11 | 6 9 | cnmpt2nd | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> x ) e. ( ( ( S ^ko R ) tX R ) Cn R ) ) |
| 12 | 1on | |- 1o e. On |
|
| 13 | distopon | |- ( 1o e. On -> ~P 1o e. ( TopOn ` 1o ) ) |
|
| 14 | 12 13 | mp1i | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ~P 1o e. ( TopOn ` 1o ) ) |
| 15 | xkoccn | |- ( ( ~P 1o e. ( TopOn ` 1o ) /\ R e. ( TopOn ` X ) ) -> ( y e. X |-> ( 1o X. { y } ) ) e. ( R Cn ( R ^ko ~P 1o ) ) ) |
|
| 16 | 14 9 15 | syl2anc | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( y e. X |-> ( 1o X. { y } ) ) e. ( R Cn ( R ^ko ~P 1o ) ) ) |
| 17 | sneq | |- ( y = x -> { y } = { x } ) |
|
| 18 | 17 | xpeq2d | |- ( y = x -> ( 1o X. { y } ) = ( 1o X. { x } ) ) |
| 19 | 6 9 11 9 16 18 | cnmpt21 | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> ( 1o X. { x } ) ) e. ( ( ( S ^ko R ) tX R ) Cn ( R ^ko ~P 1o ) ) ) |
| 20 | distop | |- ( 1o e. On -> ~P 1o e. Top ) |
|
| 21 | 12 20 | mp1i | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ~P 1o e. Top ) |
| 22 | eqid | |- ( R ^ko ~P 1o ) = ( R ^ko ~P 1o ) |
|
| 23 | 22 | xkotopon | |- ( ( ~P 1o e. Top /\ R e. Top ) -> ( R ^ko ~P 1o ) e. ( TopOn ` ( ~P 1o Cn R ) ) ) |
| 24 | 21 7 23 | syl2anc | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( R ^ko ~P 1o ) e. ( TopOn ` ( ~P 1o Cn R ) ) ) |
| 25 | simpl | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> R e. N-Locally Comp ) |
|
| 26 | simpr | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> S e. Top ) |
|
| 27 | eqid | |- ( g e. ( R Cn S ) , h e. ( ~P 1o Cn R ) |-> ( g o. h ) ) = ( g e. ( R Cn S ) , h e. ( ~P 1o Cn R ) |-> ( g o. h ) ) |
|
| 28 | 27 | xkococn | |- ( ( ~P 1o e. Top /\ R e. N-Locally Comp /\ S e. Top ) -> ( g e. ( R Cn S ) , h e. ( ~P 1o Cn R ) |-> ( g o. h ) ) e. ( ( ( S ^ko R ) tX ( R ^ko ~P 1o ) ) Cn ( S ^ko ~P 1o ) ) ) |
| 29 | 21 25 26 28 | syl3anc | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( g e. ( R Cn S ) , h e. ( ~P 1o Cn R ) |-> ( g o. h ) ) e. ( ( ( S ^ko R ) tX ( R ^ko ~P 1o ) ) Cn ( S ^ko ~P 1o ) ) ) |
| 30 | coeq1 | |- ( g = f -> ( g o. h ) = ( f o. h ) ) |
|
| 31 | coeq2 | |- ( h = ( 1o X. { x } ) -> ( f o. h ) = ( f o. ( 1o X. { x } ) ) ) |
|
| 32 | 30 31 | sylan9eq | |- ( ( g = f /\ h = ( 1o X. { x } ) ) -> ( g o. h ) = ( f o. ( 1o X. { x } ) ) ) |
| 33 | 6 9 10 19 6 24 29 32 | cnmpt22 | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> ( f o. ( 1o X. { x } ) ) ) e. ( ( ( S ^ko R ) tX R ) Cn ( S ^ko ~P 1o ) ) ) |
| 34 | eqid | |- ( S ^ko ~P 1o ) = ( S ^ko ~P 1o ) |
|
| 35 | 34 | xkotopon | |- ( ( ~P 1o e. Top /\ S e. Top ) -> ( S ^ko ~P 1o ) e. ( TopOn ` ( ~P 1o Cn S ) ) ) |
| 36 | 21 26 35 | syl2anc | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( S ^ko ~P 1o ) e. ( TopOn ` ( ~P 1o Cn S ) ) ) |
| 37 | 0lt1o | |- (/) e. 1o |
|
| 38 | 37 | a1i | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> (/) e. 1o ) |
| 39 | unipw | |- U. ~P 1o = 1o |
|
| 40 | 39 | eqcomi | |- 1o = U. ~P 1o |
| 41 | 40 | xkopjcn | |- ( ( ~P 1o e. Top /\ S e. Top /\ (/) e. 1o ) -> ( g e. ( ~P 1o Cn S ) |-> ( g ` (/) ) ) e. ( ( S ^ko ~P 1o ) Cn S ) ) |
| 42 | 21 26 38 41 | syl3anc | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( g e. ( ~P 1o Cn S ) |-> ( g ` (/) ) ) e. ( ( S ^ko ~P 1o ) Cn S ) ) |
| 43 | fveq1 | |- ( g = ( f o. ( 1o X. { x } ) ) -> ( g ` (/) ) = ( ( f o. ( 1o X. { x } ) ) ` (/) ) ) |
|
| 44 | vex | |- x e. _V |
|
| 45 | 44 | fconst | |- ( 1o X. { x } ) : 1o --> { x } |
| 46 | fvco3 | |- ( ( ( 1o X. { x } ) : 1o --> { x } /\ (/) e. 1o ) -> ( ( f o. ( 1o X. { x } ) ) ` (/) ) = ( f ` ( ( 1o X. { x } ) ` (/) ) ) ) |
|
| 47 | 45 37 46 | mp2an | |- ( ( f o. ( 1o X. { x } ) ) ` (/) ) = ( f ` ( ( 1o X. { x } ) ` (/) ) ) |
| 48 | 44 | fvconst2 | |- ( (/) e. 1o -> ( ( 1o X. { x } ) ` (/) ) = x ) |
| 49 | 37 48 | ax-mp | |- ( ( 1o X. { x } ) ` (/) ) = x |
| 50 | 49 | fveq2i | |- ( f ` ( ( 1o X. { x } ) ` (/) ) ) = ( f ` x ) |
| 51 | 47 50 | eqtri | |- ( ( f o. ( 1o X. { x } ) ) ` (/) ) = ( f ` x ) |
| 52 | 43 51 | eqtrdi | |- ( g = ( f o. ( 1o X. { x } ) ) -> ( g ` (/) ) = ( f ` x ) ) |
| 53 | 6 9 33 36 42 52 | cnmpt21 | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> ( f e. ( R Cn S ) , x e. X |-> ( f ` x ) ) e. ( ( ( S ^ko R ) tX R ) Cn S ) ) |
| 54 | 2 53 | eqeltrid | |- ( ( R e. N-Locally Comp /\ S e. Top ) -> F e. ( ( ( S ^ko R ) tX R ) Cn S ) ) |