This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of a projection map from the space of continuous functions. (This theorem can be strengthened, to joint continuity in both f and A as a function on ( S ^ko R ) tX R , but not without stronger assumptions on R ; see xkofvcn .) (Contributed by Mario Carneiro, 3-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xkopjcn.1 | ⊢ 𝑋 = ∪ 𝑅 | |
| Assertion | xkopjcn | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ‘ 𝐴 ) ) ∈ ( ( 𝑆 ↑ko 𝑅 ) Cn 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xkopjcn.1 | ⊢ 𝑋 = ∪ 𝑅 | |
| 2 | eqid | ⊢ ( 𝑆 ↑ko 𝑅 ) = ( 𝑆 ↑ko 𝑅 ) | |
| 3 | 2 | xkotopon | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) ) |
| 5 | 1 | topopn | ⊢ ( 𝑅 ∈ Top → 𝑋 ∈ 𝑅 ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → 𝑋 ∈ 𝑅 ) |
| 7 | fconst6g | ⊢ ( 𝑆 ∈ Top → ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ Top ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ Top ) |
| 9 | pttop | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ Top ) → ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ∈ Top ) | |
| 10 | 6 8 9 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ∈ Top ) |
| 11 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 12 | 1 11 | cnf | ⊢ ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) → 𝑓 : 𝑋 ⟶ ∪ 𝑆 ) |
| 13 | uniexg | ⊢ ( 𝑆 ∈ Top → ∪ 𝑆 ∈ V ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ∪ 𝑆 ∈ V ) |
| 15 | 14 6 | elmapd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑓 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ↔ 𝑓 : 𝑋 ⟶ ∪ 𝑆 ) ) |
| 16 | 12 15 | imbitrrid | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) → 𝑓 ∈ ( ∪ 𝑆 ↑m 𝑋 ) ) ) |
| 17 | 16 | ssrdv | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 Cn 𝑆 ) ⊆ ( ∪ 𝑆 ↑m 𝑋 ) ) |
| 18 | simp2 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ∈ Top ) | |
| 19 | eqid | ⊢ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) = ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) | |
| 20 | 19 11 | ptuniconst | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ 𝑆 ∈ Top ) → ( ∪ 𝑆 ↑m 𝑋 ) = ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ) |
| 21 | 6 18 20 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ∪ 𝑆 ↑m 𝑋 ) = ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ) |
| 22 | 17 21 | sseqtrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 Cn 𝑆 ) ⊆ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ) |
| 23 | eqid | ⊢ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) = ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) | |
| 24 | 23 | restuni | ⊢ ( ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ∈ Top ∧ ( 𝑅 Cn 𝑆 ) ⊆ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ) → ( 𝑅 Cn 𝑆 ) = ∪ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) |
| 25 | 10 22 24 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 Cn 𝑆 ) = ∪ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( TopOn ‘ ( 𝑅 Cn 𝑆 ) ) = ( TopOn ‘ ∪ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) |
| 27 | 4 26 | eleqtrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ∪ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ) |
| 28 | 1 19 | xkoptsub | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
| 29 | 28 | 3adant3 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) |
| 30 | eqid | ⊢ ∪ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) = ∪ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) | |
| 31 | 30 | cnss1 | ⊢ ( ( ( 𝑆 ↑ko 𝑅 ) ∈ ( TopOn ‘ ∪ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ) ∧ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) ⊆ ( 𝑆 ↑ko 𝑅 ) ) → ( ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) Cn 𝑆 ) ⊆ ( ( 𝑆 ↑ko 𝑅 ) Cn 𝑆 ) ) |
| 32 | 27 29 31 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) Cn 𝑆 ) ⊆ ( ( 𝑆 ↑ko 𝑅 ) Cn 𝑆 ) ) |
| 33 | 22 | resmptd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑓 ∈ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↦ ( 𝑓 ‘ 𝐴 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) = ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ‘ 𝐴 ) ) ) |
| 34 | simp3 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 35 | 23 19 | ptpjcn | ⊢ ( ( 𝑋 ∈ 𝑅 ∧ ( 𝑋 × { 𝑆 } ) : 𝑋 ⟶ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑓 ∈ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↦ ( 𝑓 ‘ 𝐴 ) ) ∈ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) Cn ( ( 𝑋 × { 𝑆 } ) ‘ 𝐴 ) ) ) |
| 36 | 6 8 34 35 | syl3anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑓 ∈ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↦ ( 𝑓 ‘ 𝐴 ) ) ∈ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) Cn ( ( 𝑋 × { 𝑆 } ) ‘ 𝐴 ) ) ) |
| 37 | fvconst2g | ⊢ ( ( 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝐴 ) = 𝑆 ) | |
| 38 | 37 | 3adant1 | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑋 × { 𝑆 } ) ‘ 𝐴 ) = 𝑆 ) |
| 39 | 38 | oveq2d | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) Cn ( ( 𝑋 × { 𝑆 } ) ‘ 𝐴 ) ) = ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) Cn 𝑆 ) ) |
| 40 | 36 39 | eleqtrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑓 ∈ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↦ ( 𝑓 ‘ 𝐴 ) ) ∈ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) Cn 𝑆 ) ) |
| 41 | 23 | cnrest | ⊢ ( ( ( 𝑓 ∈ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↦ ( 𝑓 ‘ 𝐴 ) ) ∈ ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) Cn 𝑆 ) ∧ ( 𝑅 Cn 𝑆 ) ⊆ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ) → ( ( 𝑓 ∈ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↦ ( 𝑓 ‘ 𝐴 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) ∈ ( ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) Cn 𝑆 ) ) |
| 42 | 40 22 41 | syl2anc | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑓 ∈ ∪ ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↦ ( 𝑓 ‘ 𝐴 ) ) ↾ ( 𝑅 Cn 𝑆 ) ) ∈ ( ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) Cn 𝑆 ) ) |
| 43 | 33 42 | eqeltrrd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ‘ 𝐴 ) ) ∈ ( ( ( ∏t ‘ ( 𝑋 × { 𝑆 } ) ) ↾t ( 𝑅 Cn 𝑆 ) ) Cn 𝑆 ) ) |
| 44 | 32 43 | sseldd | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐴 ∈ 𝑋 ) → ( 𝑓 ∈ ( 𝑅 Cn 𝑆 ) ↦ ( 𝑓 ‘ 𝐴 ) ) ∈ ( ( 𝑆 ↑ko 𝑅 ) Cn 𝑆 ) ) |