This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddmnf2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → ( -∞ +𝑒 𝐴 ) = -∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 2 | xaddval | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ +𝑒 𝐴 ) = if ( -∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( -∞ + 𝐴 ) ) ) ) ) ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℝ* → ( -∞ +𝑒 𝐴 ) = if ( -∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( -∞ + 𝐴 ) ) ) ) ) ) |
| 4 | mnfnepnf | ⊢ -∞ ≠ +∞ | |
| 5 | ifnefalse | ⊢ ( -∞ ≠ +∞ → if ( -∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( -∞ + 𝐴 ) ) ) ) ) = if ( -∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( -∞ + 𝐴 ) ) ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ if ( -∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( -∞ + 𝐴 ) ) ) ) ) = if ( -∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( -∞ + 𝐴 ) ) ) ) |
| 7 | eqid | ⊢ -∞ = -∞ | |
| 8 | 7 | iftruei | ⊢ if ( -∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( -∞ + 𝐴 ) ) ) ) = if ( 𝐴 = +∞ , 0 , -∞ ) |
| 9 | 6 8 | eqtri | ⊢ if ( -∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( -∞ + 𝐴 ) ) ) ) ) = if ( 𝐴 = +∞ , 0 , -∞ ) |
| 10 | ifnefalse | ⊢ ( 𝐴 ≠ +∞ → if ( 𝐴 = +∞ , 0 , -∞ ) = -∞ ) | |
| 11 | 9 10 | eqtrid | ⊢ ( 𝐴 ≠ +∞ → if ( -∞ = +∞ , if ( 𝐴 = -∞ , 0 , +∞ ) , if ( -∞ = -∞ , if ( 𝐴 = +∞ , 0 , -∞ ) , if ( 𝐴 = +∞ , +∞ , if ( 𝐴 = -∞ , -∞ , ( -∞ + 𝐴 ) ) ) ) ) = -∞ ) |
| 12 | 3 11 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞ ) → ( -∞ +𝑒 𝐴 ) = -∞ ) |