This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for wrd2f1tovbij . (Contributed by Alexander van der Vekens, 27-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlktovf1o.d | |- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
|
| wwlktovf1o.r | |- R = { n e. V | { P , n } e. X } |
||
| wwlktovf1o.f | |- F = ( t e. D |-> ( t ` 1 ) ) |
||
| Assertion | wwlktovf | |- F : D --> R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlktovf1o.d | |- D = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) } |
|
| 2 | wwlktovf1o.r | |- R = { n e. V | { P , n } e. X } |
|
| 3 | wwlktovf1o.f | |- F = ( t e. D |-> ( t ` 1 ) ) |
|
| 4 | wrdf | |- ( t e. Word V -> t : ( 0 ..^ ( # ` t ) ) --> V ) |
|
| 5 | oveq2 | |- ( ( # ` t ) = 2 -> ( 0 ..^ ( # ` t ) ) = ( 0 ..^ 2 ) ) |
|
| 6 | 5 | feq2d | |- ( ( # ` t ) = 2 -> ( t : ( 0 ..^ ( # ` t ) ) --> V <-> t : ( 0 ..^ 2 ) --> V ) ) |
| 7 | 1nn0 | |- 1 e. NN0 |
|
| 8 | 2nn | |- 2 e. NN |
|
| 9 | 1lt2 | |- 1 < 2 |
|
| 10 | elfzo0 | |- ( 1 e. ( 0 ..^ 2 ) <-> ( 1 e. NN0 /\ 2 e. NN /\ 1 < 2 ) ) |
|
| 11 | 7 8 9 10 | mpbir3an | |- 1 e. ( 0 ..^ 2 ) |
| 12 | ffvelcdm | |- ( ( t : ( 0 ..^ 2 ) --> V /\ 1 e. ( 0 ..^ 2 ) ) -> ( t ` 1 ) e. V ) |
|
| 13 | 11 12 | mpan2 | |- ( t : ( 0 ..^ 2 ) --> V -> ( t ` 1 ) e. V ) |
| 14 | 6 13 | biimtrdi | |- ( ( # ` t ) = 2 -> ( t : ( 0 ..^ ( # ` t ) ) --> V -> ( t ` 1 ) e. V ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) -> ( t : ( 0 ..^ ( # ` t ) ) --> V -> ( t ` 1 ) e. V ) ) |
| 16 | 4 15 | mpan9 | |- ( ( t e. Word V /\ ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) -> ( t ` 1 ) e. V ) |
| 17 | preq1 | |- ( ( t ` 0 ) = P -> { ( t ` 0 ) , ( t ` 1 ) } = { P , ( t ` 1 ) } ) |
|
| 18 | 17 | eleq1d | |- ( ( t ` 0 ) = P -> ( { ( t ` 0 ) , ( t ` 1 ) } e. X <-> { P , ( t ` 1 ) } e. X ) ) |
| 19 | 18 | biimpa | |- ( ( ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) -> { P , ( t ` 1 ) } e. X ) |
| 20 | 19 | 3adant1 | |- ( ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) -> { P , ( t ` 1 ) } e. X ) |
| 21 | 20 | adantl | |- ( ( t e. Word V /\ ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) -> { P , ( t ` 1 ) } e. X ) |
| 22 | 16 21 | jca | |- ( ( t e. Word V /\ ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) -> ( ( t ` 1 ) e. V /\ { P , ( t ` 1 ) } e. X ) ) |
| 23 | fveqeq2 | |- ( w = t -> ( ( # ` w ) = 2 <-> ( # ` t ) = 2 ) ) |
|
| 24 | fveq1 | |- ( w = t -> ( w ` 0 ) = ( t ` 0 ) ) |
|
| 25 | 24 | eqeq1d | |- ( w = t -> ( ( w ` 0 ) = P <-> ( t ` 0 ) = P ) ) |
| 26 | fveq1 | |- ( w = t -> ( w ` 1 ) = ( t ` 1 ) ) |
|
| 27 | 24 26 | preq12d | |- ( w = t -> { ( w ` 0 ) , ( w ` 1 ) } = { ( t ` 0 ) , ( t ` 1 ) } ) |
| 28 | 27 | eleq1d | |- ( w = t -> ( { ( w ` 0 ) , ( w ` 1 ) } e. X <-> { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) |
| 29 | 23 25 28 | 3anbi123d | |- ( w = t -> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. X ) <-> ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) ) |
| 30 | 29 1 | elrab2 | |- ( t e. D <-> ( t e. Word V /\ ( ( # ` t ) = 2 /\ ( t ` 0 ) = P /\ { ( t ` 0 ) , ( t ` 1 ) } e. X ) ) ) |
| 31 | preq2 | |- ( n = ( t ` 1 ) -> { P , n } = { P , ( t ` 1 ) } ) |
|
| 32 | 31 | eleq1d | |- ( n = ( t ` 1 ) -> ( { P , n } e. X <-> { P , ( t ` 1 ) } e. X ) ) |
| 33 | 32 2 | elrab2 | |- ( ( t ` 1 ) e. R <-> ( ( t ` 1 ) e. V /\ { P , ( t ` 1 ) } e. X ) ) |
| 34 | 22 30 33 | 3imtr4i | |- ( t e. D -> ( t ` 1 ) e. R ) |
| 35 | 3 34 | fmpti | |- F : D --> R |