This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| Assertion | wunom | ⊢ ( 𝜑 → ω ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑈 ∈ WUni ) |
| 3 | 1 | wunr1om | ⊢ ( 𝜑 → ( 𝑅1 “ ω ) ⊆ 𝑈 ) |
| 4 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 5 | 4 | simpli | ⊢ Fun 𝑅1 |
| 6 | 4 | simpri | ⊢ Lim dom 𝑅1 |
| 7 | limomss | ⊢ ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 ) | |
| 8 | 6 7 | ax-mp | ⊢ ω ⊆ dom 𝑅1 |
| 9 | funimass4 | ⊢ ( ( Fun 𝑅1 ∧ ω ⊆ dom 𝑅1 ) → ( ( 𝑅1 “ ω ) ⊆ 𝑈 ↔ ∀ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) | |
| 10 | 5 8 9 | mp2an | ⊢ ( ( 𝑅1 “ ω ) ⊆ 𝑈 ↔ ∀ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) |
| 11 | 3 10 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) |
| 12 | 11 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑥 ∈ ω ) | |
| 14 | 8 13 | sselid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑥 ∈ dom 𝑅1 ) |
| 15 | onssr1 | ⊢ ( 𝑥 ∈ dom 𝑅1 → 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑥 ⊆ ( 𝑅1 ‘ 𝑥 ) ) |
| 17 | 2 12 16 | wunss | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ω ) → 𝑥 ∈ 𝑈 ) |
| 18 | 17 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ω → 𝑥 ∈ 𝑈 ) ) |
| 19 | 18 | ssrdv | ⊢ ( 𝜑 → ω ⊆ 𝑈 ) |