This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| wunfi.2 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) | ||
| wunfi.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| Assertion | wunfi | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | wunfi.2 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑈 ) | |
| 3 | wunfi.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝑈 ↔ ∅ ⊆ 𝑈 ) ) | |
| 5 | eleq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝑈 ↔ ∅ ∈ 𝑈 ) ) | |
| 6 | 4 5 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ↔ ( ∅ ⊆ 𝑈 → ∅ ∈ 𝑈 ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝑈 → ∅ ∈ 𝑈 ) ) ) ) |
| 8 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝑈 ↔ 𝑦 ⊆ 𝑈 ) ) | |
| 9 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑈 ↔ 𝑦 ∈ 𝑈 ) ) | |
| 10 | 8 9 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ↔ ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) ) |
| 11 | 10 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) ) ) |
| 12 | sseq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ 𝑈 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ) ) | |
| 13 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ 𝑈 ↔ ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) | |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) ) |
| 16 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝑈 ↔ 𝐴 ⊆ 𝑈 ) ) | |
| 17 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑈 ↔ 𝐴 ∈ 𝑈 ) ) | |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ↔ ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 → ( 𝑥 ⊆ 𝑈 → 𝑥 ∈ 𝑈 ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) ) ) |
| 20 | 1 | wun0 | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
| 21 | 20 | a1d | ⊢ ( 𝜑 → ( ∅ ⊆ 𝑈 → ∅ ∈ 𝑈 ) ) |
| 22 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 23 | sstr | ⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ) → 𝑦 ⊆ 𝑈 ) | |
| 24 | 22 23 | mpan | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → 𝑦 ⊆ 𝑈 ) |
| 25 | 24 | imim1i | ⊢ ( ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) |
| 26 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑈 ∈ WUni ) |
| 27 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑈 ) | |
| 28 | simprl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ) | |
| 29 | 28 | unssbd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → { 𝑧 } ⊆ 𝑈 ) |
| 30 | vex | ⊢ 𝑧 ∈ V | |
| 31 | 30 | snss | ⊢ ( 𝑧 ∈ 𝑈 ↔ { 𝑧 } ⊆ 𝑈 ) |
| 32 | 29 31 | sylibr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) |
| 33 | 26 32 | wunsn | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → { 𝑧 } ∈ 𝑈 ) |
| 34 | 26 27 33 | wunun | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) |
| 35 | 34 | exp32 | ⊢ ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∈ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
| 36 | 35 | a2d | ⊢ ( 𝜑 → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
| 37 | 25 36 | syl5 | ⊢ ( 𝜑 → ( ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
| 38 | 37 | a2i | ⊢ ( ( 𝜑 → ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) |
| 39 | 38 | a1i | ⊢ ( 𝑦 ∈ Fin → ( ( 𝜑 → ( 𝑦 ⊆ 𝑈 → 𝑦 ∈ 𝑈 ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑈 → ( 𝑦 ∪ { 𝑧 } ) ∈ 𝑈 ) ) ) ) |
| 40 | 7 11 15 19 21 39 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) ) |
| 41 | 3 40 | mpcom | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝑈 → 𝐴 ∈ 𝑈 ) ) |
| 42 | 2 41 | mpd | ⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |