This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| Assertion | wunr1om | ⊢ ( 𝜑 → ( 𝑅1 “ ω ) ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = ∅ → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ↔ ( 𝑅1 ‘ ∅ ) ∈ 𝑈 ) ) |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ↔ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
| 6 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ suc 𝑦 ) ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ↔ ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) |
| 8 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 9 | 1 | wun0 | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
| 10 | 8 9 | eqeltrid | ⊢ ( 𝜑 → ( 𝑅1 ‘ ∅ ) ∈ 𝑈 ) |
| 11 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → 𝑈 ∈ WUni ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) | |
| 13 | 11 12 | wunpw | ⊢ ( ( 𝜑 ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) |
| 14 | nnon | ⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) | |
| 15 | r1suc | ⊢ ( 𝑦 ∈ On → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑦 ∈ ω → ( 𝑅1 ‘ suc 𝑦 ) = 𝒫 ( 𝑅1 ‘ 𝑦 ) ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑦 ∈ ω → ( ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ↔ 𝒫 ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) ) |
| 18 | 13 17 | imbitrrid | ⊢ ( 𝑦 ∈ ω → ( ( 𝜑 ∧ ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 ) → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) |
| 19 | 18 | expd | ⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝑅1 ‘ 𝑦 ) ∈ 𝑈 → ( 𝑅1 ‘ suc 𝑦 ) ∈ 𝑈 ) ) ) |
| 20 | 3 5 7 10 19 | finds2 | ⊢ ( 𝑥 ∈ ω → ( 𝜑 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ) |
| 21 | eleq1 | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ↔ 𝑦 ∈ 𝑈 ) ) | |
| 22 | 21 | imbi2d | ⊢ ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( ( 𝜑 → ( 𝑅1 ‘ 𝑥 ) ∈ 𝑈 ) ↔ ( 𝜑 → 𝑦 ∈ 𝑈 ) ) ) |
| 23 | 20 22 | syl5ibcom | ⊢ ( 𝑥 ∈ ω → ( ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( 𝜑 → 𝑦 ∈ 𝑈 ) ) ) |
| 24 | 23 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑦 → ( 𝜑 → 𝑦 ∈ 𝑈 ) ) |
| 25 | r1fnon | ⊢ 𝑅1 Fn On | |
| 26 | fnfun | ⊢ ( 𝑅1 Fn On → Fun 𝑅1 ) | |
| 27 | 25 26 | ax-mp | ⊢ Fun 𝑅1 |
| 28 | fvelima | ⊢ ( ( Fun 𝑅1 ∧ 𝑦 ∈ ( 𝑅1 “ ω ) ) → ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) | |
| 29 | 27 28 | mpan | ⊢ ( 𝑦 ∈ ( 𝑅1 “ ω ) → ∃ 𝑥 ∈ ω ( 𝑅1 ‘ 𝑥 ) = 𝑦 ) |
| 30 | 24 29 | syl11 | ⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑅1 “ ω ) → 𝑦 ∈ 𝑈 ) ) |
| 31 | 30 | ssrdv | ⊢ ( 𝜑 → ( 𝑅1 “ ω ) ⊆ 𝑈 ) |