This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wun0.1 | |- ( ph -> U e. WUni ) |
|
| Assertion | wunom | |- ( ph -> _om C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wun0.1 | |- ( ph -> U e. WUni ) |
|
| 2 | 1 | adantr | |- ( ( ph /\ x e. _om ) -> U e. WUni ) |
| 3 | 1 | wunr1om | |- ( ph -> ( R1 " _om ) C_ U ) |
| 4 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 5 | 4 | simpli | |- Fun R1 |
| 6 | 4 | simpri | |- Lim dom R1 |
| 7 | limomss | |- ( Lim dom R1 -> _om C_ dom R1 ) |
|
| 8 | 6 7 | ax-mp | |- _om C_ dom R1 |
| 9 | funimass4 | |- ( ( Fun R1 /\ _om C_ dom R1 ) -> ( ( R1 " _om ) C_ U <-> A. x e. _om ( R1 ` x ) e. U ) ) |
|
| 10 | 5 8 9 | mp2an | |- ( ( R1 " _om ) C_ U <-> A. x e. _om ( R1 ` x ) e. U ) |
| 11 | 3 10 | sylib | |- ( ph -> A. x e. _om ( R1 ` x ) e. U ) |
| 12 | 11 | r19.21bi | |- ( ( ph /\ x e. _om ) -> ( R1 ` x ) e. U ) |
| 13 | simpr | |- ( ( ph /\ x e. _om ) -> x e. _om ) |
|
| 14 | 8 13 | sselid | |- ( ( ph /\ x e. _om ) -> x e. dom R1 ) |
| 15 | onssr1 | |- ( x e. dom R1 -> x C_ ( R1 ` x ) ) |
|
| 16 | 14 15 | syl | |- ( ( ph /\ x e. _om ) -> x C_ ( R1 ` x ) ) |
| 17 | 2 12 16 | wunss | |- ( ( ph /\ x e. _om ) -> x e. U ) |
| 18 | 17 | ex | |- ( ph -> ( x e. _om -> x e. U ) ) |
| 19 | 18 | ssrdv | |- ( ph -> _om C_ U ) |