This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a weak universe from a given set. This version of wunex has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wunex3.u | ⊢ 𝑈 = ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) | |
| Assertion | wunex3 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunex3.u | ⊢ 𝑈 = ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) | |
| 2 | r1rankid | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) | |
| 3 | rankon | ⊢ ( rank ‘ 𝐴 ) ∈ On | |
| 4 | omelon | ⊢ ω ∈ On | |
| 5 | oacl | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ ω ∈ On ) → ( ( rank ‘ 𝐴 ) +o ω ) ∈ On ) | |
| 6 | 3 4 5 | mp2an | ⊢ ( ( rank ‘ 𝐴 ) +o ω ) ∈ On |
| 7 | peano1 | ⊢ ∅ ∈ ω | |
| 8 | oaord1 | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ ω ∈ On ) → ( ∅ ∈ ω ↔ ( rank ‘ 𝐴 ) ∈ ( ( rank ‘ 𝐴 ) +o ω ) ) ) | |
| 9 | 3 4 8 | mp2an | ⊢ ( ∅ ∈ ω ↔ ( rank ‘ 𝐴 ) ∈ ( ( rank ‘ 𝐴 ) +o ω ) ) |
| 10 | 7 9 | mpbi | ⊢ ( rank ‘ 𝐴 ) ∈ ( ( rank ‘ 𝐴 ) +o ω ) |
| 11 | r1ord2 | ⊢ ( ( ( rank ‘ 𝐴 ) +o ω ) ∈ On → ( ( rank ‘ 𝐴 ) ∈ ( ( rank ‘ 𝐴 ) +o ω ) → ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) ) ) | |
| 12 | 6 10 11 | mp2 | ⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) |
| 13 | 12 1 | sseqtrri | ⊢ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ⊆ 𝑈 |
| 14 | 2 13 | sstrdi | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ 𝑈 ) |
| 15 | limom | ⊢ Lim ω | |
| 16 | 4 15 | pm3.2i | ⊢ ( ω ∈ On ∧ Lim ω ) |
| 17 | oalimcl | ⊢ ( ( ( rank ‘ 𝐴 ) ∈ On ∧ ( ω ∈ On ∧ Lim ω ) ) → Lim ( ( rank ‘ 𝐴 ) +o ω ) ) | |
| 18 | 3 16 17 | mp2an | ⊢ Lim ( ( rank ‘ 𝐴 ) +o ω ) |
| 19 | r1limwun | ⊢ ( ( ( ( rank ‘ 𝐴 ) +o ω ) ∈ On ∧ Lim ( ( rank ‘ 𝐴 ) +o ω ) ) → ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) ∈ WUni ) | |
| 20 | 6 18 19 | mp2an | ⊢ ( 𝑅1 ‘ ( ( rank ‘ 𝐴 ) +o ω ) ) ∈ WUni |
| 21 | 1 20 | eqeltri | ⊢ 𝑈 ∈ WUni |
| 22 | 14 21 | jctil | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈 ) ) |