This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal is less than its sum with a nonzero ordinal. Theorem 18 of Suppes p. 209 and its converse. (Contributed by NM, 6-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oaord1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon | ⊢ ∅ ∈ On | |
| 2 | oaord | ⊢ ( ( ∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐵 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐵 ↔ ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 4 | oa0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 +o ∅ ) = 𝐴 ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( 𝐴 +o ∅ ) = 𝐴 ) |
| 6 | 5 | eleq1d | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ( 𝐴 +o ∅ ) ∈ ( 𝐴 +o 𝐵 ) ↔ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 7 | 3 6 | bitrd | ⊢ ( ( 𝐵 ∈ On ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∅ ∈ 𝐵 ↔ 𝐴 ∈ ( 𝐴 +o 𝐵 ) ) ) |