This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construct a weak universe from a given set. This version of wunex has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | wunex3.u | |- U = ( R1 ` ( ( rank ` A ) +o _om ) ) |
|
| Assertion | wunex3 | |- ( A e. V -> ( U e. WUni /\ A C_ U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wunex3.u | |- U = ( R1 ` ( ( rank ` A ) +o _om ) ) |
|
| 2 | r1rankid | |- ( A e. V -> A C_ ( R1 ` ( rank ` A ) ) ) |
|
| 3 | rankon | |- ( rank ` A ) e. On |
|
| 4 | omelon | |- _om e. On |
|
| 5 | oacl | |- ( ( ( rank ` A ) e. On /\ _om e. On ) -> ( ( rank ` A ) +o _om ) e. On ) |
|
| 6 | 3 4 5 | mp2an | |- ( ( rank ` A ) +o _om ) e. On |
| 7 | peano1 | |- (/) e. _om |
|
| 8 | oaord1 | |- ( ( ( rank ` A ) e. On /\ _om e. On ) -> ( (/) e. _om <-> ( rank ` A ) e. ( ( rank ` A ) +o _om ) ) ) |
|
| 9 | 3 4 8 | mp2an | |- ( (/) e. _om <-> ( rank ` A ) e. ( ( rank ` A ) +o _om ) ) |
| 10 | 7 9 | mpbi | |- ( rank ` A ) e. ( ( rank ` A ) +o _om ) |
| 11 | r1ord2 | |- ( ( ( rank ` A ) +o _om ) e. On -> ( ( rank ` A ) e. ( ( rank ` A ) +o _om ) -> ( R1 ` ( rank ` A ) ) C_ ( R1 ` ( ( rank ` A ) +o _om ) ) ) ) |
|
| 12 | 6 10 11 | mp2 | |- ( R1 ` ( rank ` A ) ) C_ ( R1 ` ( ( rank ` A ) +o _om ) ) |
| 13 | 12 1 | sseqtrri | |- ( R1 ` ( rank ` A ) ) C_ U |
| 14 | 2 13 | sstrdi | |- ( A e. V -> A C_ U ) |
| 15 | limom | |- Lim _om |
|
| 16 | 4 15 | pm3.2i | |- ( _om e. On /\ Lim _om ) |
| 17 | oalimcl | |- ( ( ( rank ` A ) e. On /\ ( _om e. On /\ Lim _om ) ) -> Lim ( ( rank ` A ) +o _om ) ) |
|
| 18 | 3 16 17 | mp2an | |- Lim ( ( rank ` A ) +o _om ) |
| 19 | r1limwun | |- ( ( ( ( rank ` A ) +o _om ) e. On /\ Lim ( ( rank ` A ) +o _om ) ) -> ( R1 ` ( ( rank ` A ) +o _om ) ) e. WUni ) |
|
| 20 | 6 18 19 | mp2an | |- ( R1 ` ( ( rank ` A ) +o _om ) ) e. WUni |
| 21 | 1 20 | eqeltri | |- U e. WUni |
| 22 | 14 21 | jctil | |- ( A e. V -> ( U e. WUni /\ A C_ U ) ) |