This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wuncval | ⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) = ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-wunc | ⊢ wUniCl = ( 𝑥 ∈ V ↦ ∩ { 𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢 } ) | |
| 2 | sseq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝑢 ↔ 𝐴 ⊆ 𝑢 ) ) | |
| 3 | 2 | rabbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢 } = { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ) |
| 4 | 3 | inteqd | ⊢ ( 𝑥 = 𝐴 → ∩ { 𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢 } = ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ) |
| 5 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 6 | wunex | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑢 ∈ WUni 𝐴 ⊆ 𝑢 ) | |
| 7 | rabn0 | ⊢ ( { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ≠ ∅ ↔ ∃ 𝑢 ∈ WUni 𝐴 ⊆ 𝑢 ) | |
| 8 | 6 7 | sylibr | ⊢ ( 𝐴 ∈ 𝑉 → { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ≠ ∅ ) |
| 9 | intex | ⊢ ( { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ≠ ∅ ↔ ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ∈ V ) | |
| 10 | 8 9 | sylib | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ∈ V ) |
| 11 | 1 4 5 10 | fvmptd3 | ⊢ ( 𝐴 ∈ 𝑉 → ( wUniCl ‘ 𝐴 ) = ∩ { 𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢 } ) |