This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | winalim2 | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winacard | ⊢ ( 𝐴 ∈ Inaccw → ( card ‘ 𝐴 ) = 𝐴 ) | |
| 2 | winainf | ⊢ ( 𝐴 ∈ Inaccw → ω ⊆ 𝐴 ) | |
| 3 | cardalephex | ⊢ ( ω ⊆ 𝐴 → ( ( card ‘ 𝐴 ) = 𝐴 ↔ ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ Inaccw → ( ( card ‘ 𝐴 ) = 𝐴 ↔ ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) ) |
| 5 | 1 4 | mpbid | ⊢ ( 𝐴 ∈ Inaccw → ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ) |
| 7 | df-rex | ⊢ ( ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) | |
| 8 | simprr | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → 𝐴 = ( ℵ ‘ 𝑥 ) ) | |
| 9 | 8 | eqcomd | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ℵ ‘ 𝑥 ) = 𝐴 ) |
| 10 | simprl | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → 𝑥 ∈ On ) | |
| 11 | onzsl | ⊢ ( 𝑥 ∈ On ↔ ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ∨ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) | |
| 12 | 10 11 | sylib | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ∨ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ) |
| 13 | simplr | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → 𝐴 ≠ ω ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∅ ) ) | |
| 15 | aleph0 | ⊢ ( ℵ ‘ ∅ ) = ω | |
| 16 | 14 15 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ω ) |
| 17 | eqtr | ⊢ ( ( 𝐴 = ( ℵ ‘ 𝑥 ) ∧ ( ℵ ‘ 𝑥 ) = ω ) → 𝐴 = ω ) | |
| 18 | 16 17 | sylan2 | ⊢ ( ( 𝐴 = ( ℵ ‘ 𝑥 ) ∧ 𝑥 = ∅ ) → 𝐴 = ω ) |
| 19 | 18 | ex | ⊢ ( 𝐴 = ( ℵ ‘ 𝑥 ) → ( 𝑥 = ∅ → 𝐴 = ω ) ) |
| 20 | 19 | necon3ad | ⊢ ( 𝐴 = ( ℵ ‘ 𝑥 ) → ( 𝐴 ≠ ω → ¬ 𝑥 = ∅ ) ) |
| 21 | 8 13 20 | sylc | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ¬ 𝑥 = ∅ ) |
| 22 | 21 | pm2.21d | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( 𝑥 = ∅ → Lim 𝑥 ) ) |
| 23 | breq1 | ⊢ ( 𝑧 = ( ℵ ‘ 𝑦 ) → ( 𝑧 ≺ 𝑤 ↔ ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) | |
| 24 | 23 | rexbidv | ⊢ ( 𝑧 = ( ℵ ‘ 𝑦 ) → ( ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) |
| 25 | elwina | ⊢ ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) | |
| 26 | 25 | simp3bi | ⊢ ( 𝐴 ∈ Inaccw → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) |
| 27 | 26 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) |
| 28 | onsuc | ⊢ ( 𝑦 ∈ On → suc 𝑦 ∈ On ) | |
| 29 | vex | ⊢ 𝑦 ∈ V | |
| 30 | 29 | sucid | ⊢ 𝑦 ∈ suc 𝑦 |
| 31 | alephord2i | ⊢ ( suc 𝑦 ∈ On → ( 𝑦 ∈ suc 𝑦 → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝑦 ) ) ) | |
| 32 | 28 30 31 | mpisyl | ⊢ ( 𝑦 ∈ On → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝑦 ) ) |
| 33 | 32 | ad2antrl | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( ℵ ‘ 𝑦 ) ∈ ( ℵ ‘ suc 𝑦 ) ) |
| 34 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → 𝐴 = ( ℵ ‘ 𝑥 ) ) | |
| 35 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) ) | |
| 36 | 35 | ad2antll | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) ) |
| 37 | 34 36 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → 𝐴 = ( ℵ ‘ suc 𝑦 ) ) |
| 38 | 33 37 | eleqtrrd | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( ℵ ‘ 𝑦 ) ∈ 𝐴 ) |
| 39 | 24 27 38 | rspcdva | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) |
| 40 | 39 | expr | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ On ) → ( 𝑥 = suc 𝑦 → ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) |
| 41 | iscard | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 ↔ ( 𝐴 ∈ On ∧ ∀ 𝑤 ∈ 𝐴 𝑤 ≺ 𝐴 ) ) | |
| 42 | 41 | simprbi | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ∀ 𝑤 ∈ 𝐴 𝑤 ≺ 𝐴 ) |
| 43 | rsp | ⊢ ( ∀ 𝑤 ∈ 𝐴 𝑤 ≺ 𝐴 → ( 𝑤 ∈ 𝐴 → 𝑤 ≺ 𝐴 ) ) | |
| 44 | 1 42 43 | 3syl | ⊢ ( 𝐴 ∈ Inaccw → ( 𝑤 ∈ 𝐴 → 𝑤 ≺ 𝐴 ) ) |
| 45 | 44 | ad3antrrr | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( 𝑤 ∈ 𝐴 → 𝑤 ≺ 𝐴 ) ) |
| 46 | 37 | breq2d | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( 𝑤 ≺ 𝐴 ↔ 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
| 47 | 45 46 | sylibd | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( 𝑤 ∈ 𝐴 → 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
| 48 | alephnbtwn2 | ⊢ ¬ ( ( ℵ ‘ 𝑦 ) ≺ 𝑤 ∧ 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) ) | |
| 49 | pm3.21 | ⊢ ( 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) → ( ( ℵ ‘ 𝑦 ) ≺ 𝑤 → ( ( ℵ ‘ 𝑦 ) ≺ 𝑤 ∧ 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) | |
| 50 | 48 49 | mtoi | ⊢ ( 𝑤 ≺ ( ℵ ‘ suc 𝑦 ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) |
| 51 | 47 50 | syl6 | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ( 𝑤 ∈ 𝐴 → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) |
| 52 | 51 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) ∧ 𝑤 ∈ 𝐴 ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) |
| 53 | 52 | nrexdv | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ ( 𝑦 ∈ On ∧ 𝑥 = suc 𝑦 ) ) → ¬ ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) |
| 54 | 53 | expr | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ On ) → ( 𝑥 = suc 𝑦 → ¬ ∃ 𝑤 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑤 ) ) |
| 55 | 40 54 | pm2.65d | ⊢ ( ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) ∧ 𝑦 ∈ On ) → ¬ 𝑥 = suc 𝑦 ) |
| 56 | 55 | nrexdv | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ¬ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ) |
| 57 | 56 | pm2.21d | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 → Lim 𝑥 ) ) |
| 58 | simpr | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → Lim 𝑥 ) | |
| 59 | 58 | a1i | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → Lim 𝑥 ) ) |
| 60 | 22 57 59 | 3jaod | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ( 𝑥 = ∅ ∨ ∃ 𝑦 ∈ On 𝑥 = suc 𝑦 ∨ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → Lim 𝑥 ) ) |
| 61 | 12 60 | mpd | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → Lim 𝑥 ) |
| 62 | 9 61 | jca | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) ) → ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) |
| 63 | 62 | ex | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ( ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) → ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) ) |
| 64 | 63 | eximdv | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ( ∃ 𝑥 ( 𝑥 ∈ On ∧ 𝐴 = ( ℵ ‘ 𝑥 ) ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) ) |
| 65 | 7 64 | biimtrid | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ( ∃ 𝑥 ∈ On 𝐴 = ( ℵ ‘ 𝑥 ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) ) |
| 66 | 6 65 | mpd | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) |