This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | winalim2 | |- ( ( A e. InaccW /\ A =/= _om ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winacard | |- ( A e. InaccW -> ( card ` A ) = A ) |
|
| 2 | winainf | |- ( A e. InaccW -> _om C_ A ) |
|
| 3 | cardalephex | |- ( _om C_ A -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) ) |
|
| 4 | 2 3 | syl | |- ( A e. InaccW -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) ) |
| 5 | 1 4 | mpbid | |- ( A e. InaccW -> E. x e. On A = ( aleph ` x ) ) |
| 6 | 5 | adantr | |- ( ( A e. InaccW /\ A =/= _om ) -> E. x e. On A = ( aleph ` x ) ) |
| 7 | df-rex | |- ( E. x e. On A = ( aleph ` x ) <-> E. x ( x e. On /\ A = ( aleph ` x ) ) ) |
|
| 8 | simprr | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> A = ( aleph ` x ) ) |
|
| 9 | 8 | eqcomd | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( aleph ` x ) = A ) |
| 10 | simprl | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> x e. On ) |
|
| 11 | onzsl | |- ( x e. On <-> ( x = (/) \/ E. y e. On x = suc y \/ ( x e. _V /\ Lim x ) ) ) |
|
| 12 | 10 11 | sylib | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( x = (/) \/ E. y e. On x = suc y \/ ( x e. _V /\ Lim x ) ) ) |
| 13 | simplr | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> A =/= _om ) |
|
| 14 | fveq2 | |- ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) |
|
| 15 | aleph0 | |- ( aleph ` (/) ) = _om |
|
| 16 | 14 15 | eqtrdi | |- ( x = (/) -> ( aleph ` x ) = _om ) |
| 17 | eqtr | |- ( ( A = ( aleph ` x ) /\ ( aleph ` x ) = _om ) -> A = _om ) |
|
| 18 | 16 17 | sylan2 | |- ( ( A = ( aleph ` x ) /\ x = (/) ) -> A = _om ) |
| 19 | 18 | ex | |- ( A = ( aleph ` x ) -> ( x = (/) -> A = _om ) ) |
| 20 | 19 | necon3ad | |- ( A = ( aleph ` x ) -> ( A =/= _om -> -. x = (/) ) ) |
| 21 | 8 13 20 | sylc | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> -. x = (/) ) |
| 22 | 21 | pm2.21d | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( x = (/) -> Lim x ) ) |
| 23 | breq1 | |- ( z = ( aleph ` y ) -> ( z ~< w <-> ( aleph ` y ) ~< w ) ) |
|
| 24 | 23 | rexbidv | |- ( z = ( aleph ` y ) -> ( E. w e. A z ~< w <-> E. w e. A ( aleph ` y ) ~< w ) ) |
| 25 | elwina | |- ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. z e. A E. w e. A z ~< w ) ) |
|
| 26 | 25 | simp3bi | |- ( A e. InaccW -> A. z e. A E. w e. A z ~< w ) |
| 27 | 26 | ad3antrrr | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> A. z e. A E. w e. A z ~< w ) |
| 28 | onsuc | |- ( y e. On -> suc y e. On ) |
|
| 29 | vex | |- y e. _V |
|
| 30 | 29 | sucid | |- y e. suc y |
| 31 | alephord2i | |- ( suc y e. On -> ( y e. suc y -> ( aleph ` y ) e. ( aleph ` suc y ) ) ) |
|
| 32 | 28 30 31 | mpisyl | |- ( y e. On -> ( aleph ` y ) e. ( aleph ` suc y ) ) |
| 33 | 32 | ad2antrl | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( aleph ` y ) e. ( aleph ` suc y ) ) |
| 34 | simplrr | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> A = ( aleph ` x ) ) |
|
| 35 | fveq2 | |- ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) |
|
| 36 | 35 | ad2antll | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( aleph ` x ) = ( aleph ` suc y ) ) |
| 37 | 34 36 | eqtrd | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> A = ( aleph ` suc y ) ) |
| 38 | 33 37 | eleqtrrd | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( aleph ` y ) e. A ) |
| 39 | 24 27 38 | rspcdva | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> E. w e. A ( aleph ` y ) ~< w ) |
| 40 | 39 | expr | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ y e. On ) -> ( x = suc y -> E. w e. A ( aleph ` y ) ~< w ) ) |
| 41 | iscard | |- ( ( card ` A ) = A <-> ( A e. On /\ A. w e. A w ~< A ) ) |
|
| 42 | 41 | simprbi | |- ( ( card ` A ) = A -> A. w e. A w ~< A ) |
| 43 | rsp | |- ( A. w e. A w ~< A -> ( w e. A -> w ~< A ) ) |
|
| 44 | 1 42 43 | 3syl | |- ( A e. InaccW -> ( w e. A -> w ~< A ) ) |
| 45 | 44 | ad3antrrr | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w e. A -> w ~< A ) ) |
| 46 | 37 | breq2d | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w ~< A <-> w ~< ( aleph ` suc y ) ) ) |
| 47 | 45 46 | sylibd | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w e. A -> w ~< ( aleph ` suc y ) ) ) |
| 48 | alephnbtwn2 | |- -. ( ( aleph ` y ) ~< w /\ w ~< ( aleph ` suc y ) ) |
|
| 49 | pm3.21 | |- ( w ~< ( aleph ` suc y ) -> ( ( aleph ` y ) ~< w -> ( ( aleph ` y ) ~< w /\ w ~< ( aleph ` suc y ) ) ) ) |
|
| 50 | 48 49 | mtoi | |- ( w ~< ( aleph ` suc y ) -> -. ( aleph ` y ) ~< w ) |
| 51 | 47 50 | syl6 | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w e. A -> -. ( aleph ` y ) ~< w ) ) |
| 52 | 51 | imp | |- ( ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) /\ w e. A ) -> -. ( aleph ` y ) ~< w ) |
| 53 | 52 | nrexdv | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> -. E. w e. A ( aleph ` y ) ~< w ) |
| 54 | 53 | expr | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ y e. On ) -> ( x = suc y -> -. E. w e. A ( aleph ` y ) ~< w ) ) |
| 55 | 40 54 | pm2.65d | |- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ y e. On ) -> -. x = suc y ) |
| 56 | 55 | nrexdv | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> -. E. y e. On x = suc y ) |
| 57 | 56 | pm2.21d | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( E. y e. On x = suc y -> Lim x ) ) |
| 58 | simpr | |- ( ( x e. _V /\ Lim x ) -> Lim x ) |
|
| 59 | 58 | a1i | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( ( x e. _V /\ Lim x ) -> Lim x ) ) |
| 60 | 22 57 59 | 3jaod | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( ( x = (/) \/ E. y e. On x = suc y \/ ( x e. _V /\ Lim x ) ) -> Lim x ) ) |
| 61 | 12 60 | mpd | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> Lim x ) |
| 62 | 9 61 | jca | |- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( ( aleph ` x ) = A /\ Lim x ) ) |
| 63 | 62 | ex | |- ( ( A e. InaccW /\ A =/= _om ) -> ( ( x e. On /\ A = ( aleph ` x ) ) -> ( ( aleph ` x ) = A /\ Lim x ) ) ) |
| 64 | 63 | eximdv | |- ( ( A e. InaccW /\ A =/= _om ) -> ( E. x ( x e. On /\ A = ( aleph ` x ) ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) ) |
| 65 | 7 64 | biimtrid | |- ( ( A e. InaccW /\ A =/= _om ) -> ( E. x e. On A = ( aleph ` x ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) ) |
| 66 | 6 65 | mpd | |- ( ( A e. InaccW /\ A =/= _om ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) |