This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | winafp | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ( ℵ ‘ 𝐴 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winalim2 | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ∃ 𝑥 ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | limelon | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) | |
| 4 | 2 3 | mpan | ⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 5 | alephle | ⊢ ( 𝑥 ∈ On → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ) | |
| 6 | 4 5 | syl | ⊢ ( Lim 𝑥 → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ) |
| 7 | 6 | ad2antll | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝑥 ⊆ ( ℵ ‘ 𝑥 ) ) |
| 8 | simprl | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( ℵ ‘ 𝑥 ) = 𝐴 ) | |
| 9 | 7 8 | sseqtrd | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝑥 ⊆ 𝐴 ) |
| 10 | 8 | fveq2d | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ 𝐴 ) ) |
| 11 | alephsing | ⊢ ( Lim 𝑥 → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ 𝑥 ) ) | |
| 12 | 11 | ad2antll | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ ( ℵ ‘ 𝑥 ) ) = ( cf ‘ 𝑥 ) ) |
| 13 | 10 12 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ 𝐴 ) = ( cf ‘ 𝑥 ) ) |
| 14 | elwina | ⊢ ( 𝐴 ∈ Inaccw ↔ ( 𝐴 ≠ ∅ ∧ ( cf ‘ 𝐴 ) = 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ 𝐴 𝑦 ≺ 𝑧 ) ) | |
| 15 | 14 | simp2bi | ⊢ ( 𝐴 ∈ Inaccw → ( cf ‘ 𝐴 ) = 𝐴 ) |
| 16 | 15 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ 𝐴 ) = 𝐴 ) |
| 17 | 13 16 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( cf ‘ 𝑥 ) = 𝐴 ) |
| 18 | cfle | ⊢ ( cf ‘ 𝑥 ) ⊆ 𝑥 | |
| 19 | 17 18 | eqsstrrdi | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝐴 ⊆ 𝑥 ) |
| 20 | 9 19 | eqssd | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → 𝑥 = 𝐴 ) |
| 21 | 20 | fveq2d | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝐴 ) ) |
| 22 | 21 8 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) ∧ ( ( ℵ ‘ 𝑥 ) = 𝐴 ∧ Lim 𝑥 ) ) → ( ℵ ‘ 𝐴 ) = 𝐴 ) |
| 23 | 1 22 | exlimddv | ⊢ ( ( 𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω ) → ( ℵ ‘ 𝐴 ) = 𝐴 ) |