This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subclass of a class well-ordered by membership has a minimal element. Special case of Proposition 6.26 of TakeutiZaring p. 31. (Contributed by NM, 17-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wefrc | ⊢ ( ( E We 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wess | ⊢ ( 𝐵 ⊆ 𝐴 → ( E We 𝐴 → E We 𝐵 ) ) | |
| 2 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) | |
| 3 | ineq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∩ 𝑥 ) = ( 𝐵 ∩ 𝑦 ) ) | |
| 4 | 3 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∩ 𝑥 ) = ∅ ↔ ( 𝐵 ∩ 𝑦 ) = ∅ ) ) |
| 5 | 4 | rspcev | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) = ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |
| 6 | 5 | ex | ⊢ ( 𝑦 ∈ 𝐵 → ( ( 𝐵 ∩ 𝑦 ) = ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
| 7 | 6 | adantl | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐵 ∩ 𝑦 ) = ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
| 8 | inss1 | ⊢ ( 𝐵 ∩ 𝑦 ) ⊆ 𝐵 | |
| 9 | wefr | ⊢ ( E We 𝐵 → E Fr 𝐵 ) | |
| 10 | vex | ⊢ 𝑦 ∈ V | |
| 11 | 10 | inex2 | ⊢ ( 𝐵 ∩ 𝑦 ) ∈ V |
| 12 | 11 | epfrc | ⊢ ( ( E Fr 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) |
| 13 | 9 12 | syl3an1 | ⊢ ( ( E We 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) ⊆ 𝐵 ∧ ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) → ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) |
| 14 | 13 | 3exp | ⊢ ( E We 𝐵 → ( ( 𝐵 ∩ 𝑦 ) ⊆ 𝐵 → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) ) |
| 15 | 8 14 | mpi | ⊢ ( E We 𝐵 → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) |
| 16 | rexin | ⊢ ( ∃ 𝑥 ∈ ( 𝐵 ∩ 𝑦 ) ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) | |
| 17 | 15 16 | imbitrdi | ⊢ ( E We 𝐵 → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) ) |
| 18 | 17 | adantr | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) ) |
| 19 | elin | ⊢ ( 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝑥 ) ) | |
| 20 | df-3an | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) | |
| 21 | 3anrot | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 22 | 20 21 | bitr3i | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 23 | wetrep | ⊢ ( ( E We 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) → 𝑧 ∈ 𝑦 ) ) | |
| 24 | 23 | expd | ⊢ ( ( E We 𝐵 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
| 25 | 22 24 | sylan2b | ⊢ ( ( E We 𝐵 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) |
| 26 | 25 | exp44 | ⊢ ( E We 𝐵 → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) ) ) |
| 27 | 26 | imp | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐵 → ( 𝑥 ∈ 𝐵 → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 28 | 27 | com34 | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐵 → ( 𝑧 ∈ 𝑥 → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) ) |
| 29 | 28 | impd | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) |
| 30 | 19 29 | biimtrid | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → 𝑧 ∈ 𝑦 ) ) ) ) |
| 31 | 30 | imp4a | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → 𝑧 ∈ 𝑦 ) ) ) |
| 32 | 31 | com23 | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) ) |
| 33 | 32 | ralrimdv | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → ∀ 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) 𝑧 ∈ 𝑦 ) ) |
| 34 | dfss3 | ⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 ↔ ∀ 𝑧 ∈ ( 𝐵 ∩ 𝑥 ) 𝑧 ∈ 𝑦 ) | |
| 35 | 33 34 | imbitrrdi | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 ) ) |
| 36 | dfss | ⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 ↔ ( 𝐵 ∩ 𝑥 ) = ( ( 𝐵 ∩ 𝑥 ) ∩ 𝑦 ) ) | |
| 37 | in32 | ⊢ ( ( 𝐵 ∩ 𝑥 ) ∩ 𝑦 ) = ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) | |
| 38 | 37 | eqeq2i | ⊢ ( ( 𝐵 ∩ 𝑥 ) = ( ( 𝐵 ∩ 𝑥 ) ∩ 𝑦 ) ↔ ( 𝐵 ∩ 𝑥 ) = ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) ) |
| 39 | 36 38 | sylbb | ⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 → ( 𝐵 ∩ 𝑥 ) = ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) ) |
| 40 | 39 | eqeq1d | ⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 → ( ( 𝐵 ∩ 𝑥 ) = ∅ ↔ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) ) |
| 41 | 40 | biimprd | ⊢ ( ( 𝐵 ∩ 𝑥 ) ⊆ 𝑦 → ( ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ → ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
| 42 | 35 41 | syl6 | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝑦 ) → ( ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ → ( 𝐵 ∩ 𝑥 ) = ∅ ) ) ) |
| 43 | 42 | expd | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝑦 → ( ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ → ( 𝐵 ∩ 𝑥 ) = ∅ ) ) ) ) |
| 44 | 43 | imp4a | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) → ( 𝐵 ∩ 𝑥 ) = ∅ ) ) ) |
| 45 | 44 | reximdvai | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝑦 ∧ ( ( 𝐵 ∩ 𝑦 ) ∩ 𝑥 ) = ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
| 46 | 18 45 | syld | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
| 47 | 7 46 | pm2.61dne | ⊢ ( ( E We 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |
| 48 | 47 | ex | ⊢ ( E We 𝐵 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
| 49 | 48 | exlimdv | ⊢ ( E We 𝐵 → ( ∃ 𝑦 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
| 50 | 2 49 | biimtrid | ⊢ ( E We 𝐵 → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) |
| 51 | 1 50 | syl6com | ⊢ ( E We 𝐴 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) ) ) |
| 52 | 51 | 3imp | ⊢ ( ( E We 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ( 𝐵 ∩ 𝑥 ) = ∅ ) |