This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subclass of a class well-ordered by membership has a minimal element. Special case of Proposition 6.26 of TakeutiZaring p. 31. (Contributed by NM, 17-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wefrc | |- ( ( _E We A /\ B C_ A /\ B =/= (/) ) -> E. x e. B ( B i^i x ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wess | |- ( B C_ A -> ( _E We A -> _E We B ) ) |
|
| 2 | n0 | |- ( B =/= (/) <-> E. y y e. B ) |
|
| 3 | ineq2 | |- ( x = y -> ( B i^i x ) = ( B i^i y ) ) |
|
| 4 | 3 | eqeq1d | |- ( x = y -> ( ( B i^i x ) = (/) <-> ( B i^i y ) = (/) ) ) |
| 5 | 4 | rspcev | |- ( ( y e. B /\ ( B i^i y ) = (/) ) -> E. x e. B ( B i^i x ) = (/) ) |
| 6 | 5 | ex | |- ( y e. B -> ( ( B i^i y ) = (/) -> E. x e. B ( B i^i x ) = (/) ) ) |
| 7 | 6 | adantl | |- ( ( _E We B /\ y e. B ) -> ( ( B i^i y ) = (/) -> E. x e. B ( B i^i x ) = (/) ) ) |
| 8 | inss1 | |- ( B i^i y ) C_ B |
|
| 9 | wefr | |- ( _E We B -> _E Fr B ) |
|
| 10 | vex | |- y e. _V |
|
| 11 | 10 | inex2 | |- ( B i^i y ) e. _V |
| 12 | 11 | epfrc | |- ( ( _E Fr B /\ ( B i^i y ) C_ B /\ ( B i^i y ) =/= (/) ) -> E. x e. ( B i^i y ) ( ( B i^i y ) i^i x ) = (/) ) |
| 13 | 9 12 | syl3an1 | |- ( ( _E We B /\ ( B i^i y ) C_ B /\ ( B i^i y ) =/= (/) ) -> E. x e. ( B i^i y ) ( ( B i^i y ) i^i x ) = (/) ) |
| 14 | 13 | 3exp | |- ( _E We B -> ( ( B i^i y ) C_ B -> ( ( B i^i y ) =/= (/) -> E. x e. ( B i^i y ) ( ( B i^i y ) i^i x ) = (/) ) ) ) |
| 15 | 8 14 | mpi | |- ( _E We B -> ( ( B i^i y ) =/= (/) -> E. x e. ( B i^i y ) ( ( B i^i y ) i^i x ) = (/) ) ) |
| 16 | rexin | |- ( E. x e. ( B i^i y ) ( ( B i^i y ) i^i x ) = (/) <-> E. x e. B ( x e. y /\ ( ( B i^i y ) i^i x ) = (/) ) ) |
|
| 17 | 15 16 | imbitrdi | |- ( _E We B -> ( ( B i^i y ) =/= (/) -> E. x e. B ( x e. y /\ ( ( B i^i y ) i^i x ) = (/) ) ) ) |
| 18 | 17 | adantr | |- ( ( _E We B /\ y e. B ) -> ( ( B i^i y ) =/= (/) -> E. x e. B ( x e. y /\ ( ( B i^i y ) i^i x ) = (/) ) ) ) |
| 19 | elin | |- ( z e. ( B i^i x ) <-> ( z e. B /\ z e. x ) ) |
|
| 20 | df-3an | |- ( ( y e. B /\ z e. B /\ x e. B ) <-> ( ( y e. B /\ z e. B ) /\ x e. B ) ) |
|
| 21 | 3anrot | |- ( ( y e. B /\ z e. B /\ x e. B ) <-> ( z e. B /\ x e. B /\ y e. B ) ) |
|
| 22 | 20 21 | bitr3i | |- ( ( ( y e. B /\ z e. B ) /\ x e. B ) <-> ( z e. B /\ x e. B /\ y e. B ) ) |
| 23 | wetrep | |- ( ( _E We B /\ ( z e. B /\ x e. B /\ y e. B ) ) -> ( ( z e. x /\ x e. y ) -> z e. y ) ) |
|
| 24 | 23 | expd | |- ( ( _E We B /\ ( z e. B /\ x e. B /\ y e. B ) ) -> ( z e. x -> ( x e. y -> z e. y ) ) ) |
| 25 | 22 24 | sylan2b | |- ( ( _E We B /\ ( ( y e. B /\ z e. B ) /\ x e. B ) ) -> ( z e. x -> ( x e. y -> z e. y ) ) ) |
| 26 | 25 | exp44 | |- ( _E We B -> ( y e. B -> ( z e. B -> ( x e. B -> ( z e. x -> ( x e. y -> z e. y ) ) ) ) ) ) |
| 27 | 26 | imp | |- ( ( _E We B /\ y e. B ) -> ( z e. B -> ( x e. B -> ( z e. x -> ( x e. y -> z e. y ) ) ) ) ) |
| 28 | 27 | com34 | |- ( ( _E We B /\ y e. B ) -> ( z e. B -> ( z e. x -> ( x e. B -> ( x e. y -> z e. y ) ) ) ) ) |
| 29 | 28 | impd | |- ( ( _E We B /\ y e. B ) -> ( ( z e. B /\ z e. x ) -> ( x e. B -> ( x e. y -> z e. y ) ) ) ) |
| 30 | 19 29 | biimtrid | |- ( ( _E We B /\ y e. B ) -> ( z e. ( B i^i x ) -> ( x e. B -> ( x e. y -> z e. y ) ) ) ) |
| 31 | 30 | imp4a | |- ( ( _E We B /\ y e. B ) -> ( z e. ( B i^i x ) -> ( ( x e. B /\ x e. y ) -> z e. y ) ) ) |
| 32 | 31 | com23 | |- ( ( _E We B /\ y e. B ) -> ( ( x e. B /\ x e. y ) -> ( z e. ( B i^i x ) -> z e. y ) ) ) |
| 33 | 32 | ralrimdv | |- ( ( _E We B /\ y e. B ) -> ( ( x e. B /\ x e. y ) -> A. z e. ( B i^i x ) z e. y ) ) |
| 34 | dfss3 | |- ( ( B i^i x ) C_ y <-> A. z e. ( B i^i x ) z e. y ) |
|
| 35 | 33 34 | imbitrrdi | |- ( ( _E We B /\ y e. B ) -> ( ( x e. B /\ x e. y ) -> ( B i^i x ) C_ y ) ) |
| 36 | dfss | |- ( ( B i^i x ) C_ y <-> ( B i^i x ) = ( ( B i^i x ) i^i y ) ) |
|
| 37 | in32 | |- ( ( B i^i x ) i^i y ) = ( ( B i^i y ) i^i x ) |
|
| 38 | 37 | eqeq2i | |- ( ( B i^i x ) = ( ( B i^i x ) i^i y ) <-> ( B i^i x ) = ( ( B i^i y ) i^i x ) ) |
| 39 | 36 38 | sylbb | |- ( ( B i^i x ) C_ y -> ( B i^i x ) = ( ( B i^i y ) i^i x ) ) |
| 40 | 39 | eqeq1d | |- ( ( B i^i x ) C_ y -> ( ( B i^i x ) = (/) <-> ( ( B i^i y ) i^i x ) = (/) ) ) |
| 41 | 40 | biimprd | |- ( ( B i^i x ) C_ y -> ( ( ( B i^i y ) i^i x ) = (/) -> ( B i^i x ) = (/) ) ) |
| 42 | 35 41 | syl6 | |- ( ( _E We B /\ y e. B ) -> ( ( x e. B /\ x e. y ) -> ( ( ( B i^i y ) i^i x ) = (/) -> ( B i^i x ) = (/) ) ) ) |
| 43 | 42 | expd | |- ( ( _E We B /\ y e. B ) -> ( x e. B -> ( x e. y -> ( ( ( B i^i y ) i^i x ) = (/) -> ( B i^i x ) = (/) ) ) ) ) |
| 44 | 43 | imp4a | |- ( ( _E We B /\ y e. B ) -> ( x e. B -> ( ( x e. y /\ ( ( B i^i y ) i^i x ) = (/) ) -> ( B i^i x ) = (/) ) ) ) |
| 45 | 44 | reximdvai | |- ( ( _E We B /\ y e. B ) -> ( E. x e. B ( x e. y /\ ( ( B i^i y ) i^i x ) = (/) ) -> E. x e. B ( B i^i x ) = (/) ) ) |
| 46 | 18 45 | syld | |- ( ( _E We B /\ y e. B ) -> ( ( B i^i y ) =/= (/) -> E. x e. B ( B i^i x ) = (/) ) ) |
| 47 | 7 46 | pm2.61dne | |- ( ( _E We B /\ y e. B ) -> E. x e. B ( B i^i x ) = (/) ) |
| 48 | 47 | ex | |- ( _E We B -> ( y e. B -> E. x e. B ( B i^i x ) = (/) ) ) |
| 49 | 48 | exlimdv | |- ( _E We B -> ( E. y y e. B -> E. x e. B ( B i^i x ) = (/) ) ) |
| 50 | 2 49 | biimtrid | |- ( _E We B -> ( B =/= (/) -> E. x e. B ( B i^i x ) = (/) ) ) |
| 51 | 1 50 | syl6com | |- ( _E We A -> ( B C_ A -> ( B =/= (/) -> E. x e. B ( B i^i x ) = (/) ) ) ) |
| 52 | 51 | 3imp | |- ( ( _E We A /\ B C_ A /\ B =/= (/) ) -> E. x e. B ( B i^i x ) = (/) ) |