This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of vtxdusgr0edgnel , not based on vtxduhgr0edgnel . A vertex in a simple graph has degree 0 if there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxdusgr0edgnelALT | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | 1 2 3 | vtxdusgrfvedg | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
| 5 | 4 | eqeq1d | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) = 0 ) ) |
| 6 | fvex | ⊢ ( Edg ‘ 𝐺 ) ∈ V | |
| 7 | 2 6 | eqeltri | ⊢ 𝐸 ∈ V |
| 8 | 7 | rabex | ⊢ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ V |
| 9 | hasheq0 | ⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ∈ V → ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) = 0 ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = ∅ ) ) | |
| 10 | 8 9 | mp1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) = 0 ↔ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = ∅ ) ) |
| 11 | rabeq0 | ⊢ ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = ∅ ↔ ∀ 𝑒 ∈ 𝐸 ¬ 𝑈 ∈ 𝑒 ) | |
| 12 | ralnex | ⊢ ( ∀ 𝑒 ∈ 𝐸 ¬ 𝑈 ∈ 𝑒 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) | |
| 13 | 12 | a1i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ∀ 𝑒 ∈ 𝐸 ¬ 𝑈 ∈ 𝑒 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |
| 14 | 11 13 | bitrid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } = ∅ ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |
| 15 | 5 10 14 | 3bitrd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |