This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree function on finite simple graphs is a function from vertices to nonnegative integers. (Contributed by AV, 12-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vtxdgfusgrf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | vtxdgfusgrf | ⊢ ( 𝐺 ∈ FinUSGraph → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgfusgrf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | fusgrfis | ⊢ ( 𝐺 ∈ FinUSGraph → ( Edg ‘ 𝐺 ) ∈ Fin ) | |
| 3 | fusgrusgr | ⊢ ( 𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 6 | 4 5 | usgredgffibi | ⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ ( iEdg ‘ 𝐺 ) ∈ Fin ) ) |
| 8 | usgrfun | ⊢ ( 𝐺 ∈ USGraph → Fun ( iEdg ‘ 𝐺 ) ) | |
| 9 | fundmfibi | ⊢ ( Fun ( iEdg ‘ 𝐺 ) → ( ( iEdg ‘ 𝐺 ) ∈ Fin ↔ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) ) | |
| 10 | 3 8 9 | 3syl | ⊢ ( 𝐺 ∈ FinUSGraph → ( ( iEdg ‘ 𝐺 ) ∈ Fin ↔ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) ) |
| 11 | 7 10 | bitrd | ⊢ ( 𝐺 ∈ FinUSGraph → ( ( Edg ‘ 𝐺 ) ∈ Fin ↔ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) ) |
| 12 | 2 11 | mpbid | ⊢ ( 𝐺 ∈ FinUSGraph → dom ( iEdg ‘ 𝐺 ) ∈ Fin ) |
| 13 | eqid | ⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) | |
| 14 | 1 4 13 | vtxdgfisf | ⊢ ( ( 𝐺 ∈ FinUSGraph ∧ dom ( iEdg ‘ 𝐺 ) ∈ Fin ) → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ) |
| 15 | 12 14 | mpdan | ⊢ ( 𝐺 ∈ FinUSGraph → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ) |