This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the vertex degree function for a simple graph. (Contributed by AV, 12-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxdusgrfvedg | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) | |
| 6 | 1 4 5 3 | vtxdusgrval | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) ) |
| 7 | usgruspgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) | |
| 8 | uspgrushgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USHGraph ) |
| 10 | 1 2 | vtxdushgrfvedglem | ⊢ ( ( 𝐺 ∈ USHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
| 11 | 9 10 | sylan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ♯ ‘ { 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) } ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |
| 12 | 6 11 | eqtrd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑈 ) = ( ♯ ‘ { 𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒 } ) ) |