This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vertex in a simple graph has degree 0 iff there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020) (Proof shortened by AV, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | ||
| Assertion | vtxdusgr0edgnel | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdushgrfvedg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | vtxdushgrfvedg.d | ⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) | |
| 4 | usgruhgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) | |
| 5 | 1 2 3 | vtxduhgr0edgnel | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉 ) → ( ( 𝐷 ‘ 𝑈 ) = 0 ↔ ¬ ∃ 𝑒 ∈ 𝐸 𝑈 ∈ 𝑒 ) ) |