This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of vtxdusgr0edgnel , not based on vtxduhgr0edgnel . A vertex in a simple graph has degree 0 if there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
||
| vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
||
| Assertion | vtxdusgr0edgnelALT | |- ( ( G e. USGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
|
| 3 | vtxdushgrfvedg.d | |- D = ( VtxDeg ` G ) |
|
| 4 | 1 2 3 | vtxdusgrfvedg | |- ( ( G e. USGraph /\ U e. V ) -> ( D ` U ) = ( # ` { e e. E | U e. e } ) ) |
| 5 | 4 | eqeq1d | |- ( ( G e. USGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> ( # ` { e e. E | U e. e } ) = 0 ) ) |
| 6 | fvex | |- ( Edg ` G ) e. _V |
|
| 7 | 2 6 | eqeltri | |- E e. _V |
| 8 | 7 | rabex | |- { e e. E | U e. e } e. _V |
| 9 | hasheq0 | |- ( { e e. E | U e. e } e. _V -> ( ( # ` { e e. E | U e. e } ) = 0 <-> { e e. E | U e. e } = (/) ) ) |
|
| 10 | 8 9 | mp1i | |- ( ( G e. USGraph /\ U e. V ) -> ( ( # ` { e e. E | U e. e } ) = 0 <-> { e e. E | U e. e } = (/) ) ) |
| 11 | rabeq0 | |- ( { e e. E | U e. e } = (/) <-> A. e e. E -. U e. e ) |
|
| 12 | ralnex | |- ( A. e e. E -. U e. e <-> -. E. e e. E U e. e ) |
|
| 13 | 12 | a1i | |- ( ( G e. USGraph /\ U e. V ) -> ( A. e e. E -. U e. e <-> -. E. e e. E U e. e ) ) |
| 14 | 11 13 | bitrid | |- ( ( G e. USGraph /\ U e. V ) -> ( { e e. E | U e. e } = (/) <-> -. E. e e. E U e. e ) ) |
| 15 | 5 10 14 | 3bitrd | |- ( ( G e. USGraph /\ U e. V ) -> ( ( D ` U ) = 0 <-> -. E. e e. E U e. e ) ) |