This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vmaval.1 | ⊢ 𝑆 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } | |
| Assertion | vmaval | ⊢ ( 𝐴 ∈ ℕ → ( Λ ‘ 𝐴 ) = if ( ( ♯ ‘ 𝑆 ) = 1 , ( log ‘ ∪ 𝑆 ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vmaval.1 | ⊢ 𝑆 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } | |
| 2 | prmex | ⊢ ℙ ∈ V | |
| 3 | 2 | rabex | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ∈ V |
| 4 | 3 | a1i | ⊢ ( 𝑥 = 𝐴 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ∈ V ) |
| 5 | id | ⊢ ( 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } → 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) | |
| 6 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴 ) ) | |
| 7 | 6 | rabbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑥 = 𝐴 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } = 𝑆 ) |
| 9 | 5 8 | sylan9eqr | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → 𝑠 = 𝑆 ) |
| 10 | 9 | fveqeq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → ( ( ♯ ‘ 𝑠 ) = 1 ↔ ( ♯ ‘ 𝑆 ) = 1 ) ) |
| 11 | 9 | unieqd | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → ∪ 𝑠 = ∪ 𝑆 ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → ( log ‘ ∪ 𝑠 ) = ( log ‘ ∪ 𝑆 ) ) |
| 13 | 10 12 | ifbieq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑠 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) → if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) = if ( ( ♯ ‘ 𝑆 ) = 1 , ( log ‘ ∪ 𝑆 ) , 0 ) ) |
| 14 | 4 13 | csbied | ⊢ ( 𝑥 = 𝐴 → ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) = if ( ( ♯ ‘ 𝑆 ) = 1 , ( log ‘ ∪ 𝑆 ) , 0 ) ) |
| 15 | df-vma | ⊢ Λ = ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) | |
| 16 | fvex | ⊢ ( log ‘ ∪ 𝑆 ) ∈ V | |
| 17 | c0ex | ⊢ 0 ∈ V | |
| 18 | 16 17 | ifex | ⊢ if ( ( ♯ ‘ 𝑆 ) = 1 , ( log ‘ ∪ 𝑆 ) , 0 ) ∈ V |
| 19 | 14 15 18 | fvmpt | ⊢ ( 𝐴 ∈ ℕ → ( Λ ‘ 𝐴 ) = if ( ( ♯ ‘ 𝑆 ) = 1 , ( log ‘ ∪ 𝑆 ) , 0 ) ) |