This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the von Mangoldt function, which gives the logarithm of the prime at a prime power, and is zero elsewhere, see definition in ApostolNT p. 32. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-vma | ⊢ Λ = ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cvma | ⊢ Λ | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cn | ⊢ ℕ | |
| 3 | vp | ⊢ 𝑝 | |
| 4 | cprime | ⊢ ℙ | |
| 5 | 3 | cv | ⊢ 𝑝 |
| 6 | cdvds | ⊢ ∥ | |
| 7 | 1 | cv | ⊢ 𝑥 |
| 8 | 5 7 6 | wbr | ⊢ 𝑝 ∥ 𝑥 |
| 9 | 8 3 4 | crab | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } |
| 10 | vs | ⊢ 𝑠 | |
| 11 | chash | ⊢ ♯ | |
| 12 | 10 | cv | ⊢ 𝑠 |
| 13 | 12 11 | cfv | ⊢ ( ♯ ‘ 𝑠 ) |
| 14 | c1 | ⊢ 1 | |
| 15 | 13 14 | wceq | ⊢ ( ♯ ‘ 𝑠 ) = 1 |
| 16 | clog | ⊢ log | |
| 17 | 12 | cuni | ⊢ ∪ 𝑠 |
| 18 | 17 16 | cfv | ⊢ ( log ‘ ∪ 𝑠 ) |
| 19 | cc0 | ⊢ 0 | |
| 20 | 15 18 19 | cif | ⊢ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) |
| 21 | 10 9 20 | csb | ⊢ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) |
| 22 | 1 2 21 | cmpt | ⊢ ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) |
| 23 | 0 22 | wceq | ⊢ Λ = ( 𝑥 ∈ ℕ ↦ ⦋ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } / 𝑠 ⦌ if ( ( ♯ ‘ 𝑠 ) = 1 , ( log ‘ ∪ 𝑠 ) , 0 ) ) |