This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the von Mangoldt function. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vmaval.1 | |- S = { p e. Prime | p || A } |
|
| Assertion | vmaval | |- ( A e. NN -> ( Lam ` A ) = if ( ( # ` S ) = 1 , ( log ` U. S ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vmaval.1 | |- S = { p e. Prime | p || A } |
|
| 2 | prmex | |- Prime e. _V |
|
| 3 | 2 | rabex | |- { p e. Prime | p || x } e. _V |
| 4 | 3 | a1i | |- ( x = A -> { p e. Prime | p || x } e. _V ) |
| 5 | id | |- ( s = { p e. Prime | p || x } -> s = { p e. Prime | p || x } ) |
|
| 6 | breq2 | |- ( x = A -> ( p || x <-> p || A ) ) |
|
| 7 | 6 | rabbidv | |- ( x = A -> { p e. Prime | p || x } = { p e. Prime | p || A } ) |
| 8 | 7 1 | eqtr4di | |- ( x = A -> { p e. Prime | p || x } = S ) |
| 9 | 5 8 | sylan9eqr | |- ( ( x = A /\ s = { p e. Prime | p || x } ) -> s = S ) |
| 10 | 9 | fveqeq2d | |- ( ( x = A /\ s = { p e. Prime | p || x } ) -> ( ( # ` s ) = 1 <-> ( # ` S ) = 1 ) ) |
| 11 | 9 | unieqd | |- ( ( x = A /\ s = { p e. Prime | p || x } ) -> U. s = U. S ) |
| 12 | 11 | fveq2d | |- ( ( x = A /\ s = { p e. Prime | p || x } ) -> ( log ` U. s ) = ( log ` U. S ) ) |
| 13 | 10 12 | ifbieq1d | |- ( ( x = A /\ s = { p e. Prime | p || x } ) -> if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) = if ( ( # ` S ) = 1 , ( log ` U. S ) , 0 ) ) |
| 14 | 4 13 | csbied | |- ( x = A -> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) = if ( ( # ` S ) = 1 , ( log ` U. S ) , 0 ) ) |
| 15 | df-vma | |- Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |
|
| 16 | fvex | |- ( log ` U. S ) e. _V |
|
| 17 | c0ex | |- 0 e. _V |
|
| 18 | 16 17 | ifex | |- if ( ( # ` S ) = 1 , ( log ` U. S ) , 0 ) e. _V |
| 19 | 14 15 18 | fvmpt | |- ( A e. NN -> ( Lam ` A ) = if ( ( # ` S ) = 1 , ( log ` U. S ) , 0 ) ) |