This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 25-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vcm.1 | ⊢ 𝐺 = ( 1st ‘ 𝑊 ) | |
| vcm.2 | ⊢ 𝑆 = ( 2nd ‘ 𝑊 ) | ||
| vcm.3 | ⊢ 𝑋 = ran 𝐺 | ||
| vcm.4 | ⊢ 𝑀 = ( inv ‘ 𝐺 ) | ||
| Assertion | vcm | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) = ( 𝑀 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vcm.1 | ⊢ 𝐺 = ( 1st ‘ 𝑊 ) | |
| 2 | vcm.2 | ⊢ 𝑆 = ( 2nd ‘ 𝑊 ) | |
| 3 | vcm.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | vcm.4 | ⊢ 𝑀 = ( inv ‘ 𝐺 ) | |
| 5 | 1 | vcgrp | ⊢ ( 𝑊 ∈ CVecOLD → 𝐺 ∈ GrpOp ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ GrpOp ) |
| 7 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 8 | 1 2 3 | vccl | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 9 | 7 8 | mp3an2 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) |
| 10 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 11 | 3 10 | grporid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( - 1 𝑆 𝐴 ) ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( - 1 𝑆 𝐴 ) ) |
| 12 | 6 9 11 | syl2anc | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( - 1 𝑆 𝐴 ) ) |
| 13 | simpr | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 14 | 3 4 | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) |
| 15 | 5 14 | sylan | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) |
| 16 | 3 | grpoass | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( ( - 1 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 17 | 6 9 13 15 16 | syl13anc | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 18 | 1 2 3 | vcidOLD | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 19 | 18 | oveq2d | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) ) |
| 20 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 21 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
| 22 | 20 7 21 | addcomli | ⊢ ( - 1 + 1 ) = 0 |
| 23 | 22 | oveq1i | ⊢ ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( 0 𝑆 𝐴 ) |
| 24 | 1 2 3 | vcdir | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( - 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 25 | 7 24 | mp3anr1 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 26 | 20 25 | mpanr1 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 + 1 ) 𝑆 𝐴 ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) |
| 27 | 1 2 3 10 | vc0 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 28 | 23 26 27 | 3eqtr3a | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 29 | 19 28 | eqtr3d | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( ( - 1 𝑆 𝐴 ) 𝐺 𝐴 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) |
| 31 | 17 30 | eqtr3d | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) = ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) |
| 32 | 3 10 4 | grporinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 33 | 5 32 | sylan | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( GId ‘ 𝐺 ) ) |
| 34 | 33 | oveq2d | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( 𝐴 𝐺 ( 𝑀 ‘ 𝐴 ) ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 35 | 31 34 | eqtr3d | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) ) |
| 36 | 3 10 | grpolid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑀 ‘ 𝐴 ) ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
| 37 | 6 15 36 | syl2anc | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 ( 𝑀 ‘ 𝐴 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
| 38 | 35 37 | eqtr3d | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( - 1 𝑆 𝐴 ) 𝐺 ( GId ‘ 𝐺 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
| 39 | 12 38 | eqtr3d | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( - 1 𝑆 𝐴 ) = ( 𝑀 ‘ 𝐴 ) ) |