This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group element's inverse is a group element. (Contributed by NM, 27-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvcl.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpinvcl.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| Assertion | grpoinvcl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcl.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpinvcl.2 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 4 | 1 3 2 | grpoinvval | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) ) |
| 5 | 1 3 | grpoinveu | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 6 | riotacl | ⊢ ( ∃! 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) ∈ 𝑋 ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ℩ 𝑦 ∈ 𝑋 ( 𝑦 𝐺 𝐴 ) = ( GId ‘ 𝐺 ) ) ∈ 𝑋 ) |
| 8 | 4 7 | eqeltrd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ 𝑋 ) |