This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of Kreyszig p. 51. (Contributed by NM, 25-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vcm.1 | |- G = ( 1st ` W ) |
|
| vcm.2 | |- S = ( 2nd ` W ) |
||
| vcm.3 | |- X = ran G |
||
| vcm.4 | |- M = ( inv ` G ) |
||
| Assertion | vcm | |- ( ( W e. CVecOLD /\ A e. X ) -> ( -u 1 S A ) = ( M ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vcm.1 | |- G = ( 1st ` W ) |
|
| 2 | vcm.2 | |- S = ( 2nd ` W ) |
|
| 3 | vcm.3 | |- X = ran G |
|
| 4 | vcm.4 | |- M = ( inv ` G ) |
|
| 5 | 1 | vcgrp | |- ( W e. CVecOLD -> G e. GrpOp ) |
| 6 | 5 | adantr | |- ( ( W e. CVecOLD /\ A e. X ) -> G e. GrpOp ) |
| 7 | neg1cn | |- -u 1 e. CC |
|
| 8 | 1 2 3 | vccl | |- ( ( W e. CVecOLD /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 S A ) e. X ) |
| 9 | 7 8 | mp3an2 | |- ( ( W e. CVecOLD /\ A e. X ) -> ( -u 1 S A ) e. X ) |
| 10 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 11 | 3 10 | grporid | |- ( ( G e. GrpOp /\ ( -u 1 S A ) e. X ) -> ( ( -u 1 S A ) G ( GId ` G ) ) = ( -u 1 S A ) ) |
| 12 | 6 9 11 | syl2anc | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( GId ` G ) ) = ( -u 1 S A ) ) |
| 13 | simpr | |- ( ( W e. CVecOLD /\ A e. X ) -> A e. X ) |
|
| 14 | 3 4 | grpoinvcl | |- ( ( G e. GrpOp /\ A e. X ) -> ( M ` A ) e. X ) |
| 15 | 5 14 | sylan | |- ( ( W e. CVecOLD /\ A e. X ) -> ( M ` A ) e. X ) |
| 16 | 3 | grpoass | |- ( ( G e. GrpOp /\ ( ( -u 1 S A ) e. X /\ A e. X /\ ( M ` A ) e. X ) ) -> ( ( ( -u 1 S A ) G A ) G ( M ` A ) ) = ( ( -u 1 S A ) G ( A G ( M ` A ) ) ) ) |
| 17 | 6 9 13 15 16 | syl13anc | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( ( -u 1 S A ) G A ) G ( M ` A ) ) = ( ( -u 1 S A ) G ( A G ( M ` A ) ) ) ) |
| 18 | 1 2 3 | vcidOLD | |- ( ( W e. CVecOLD /\ A e. X ) -> ( 1 S A ) = A ) |
| 19 | 18 | oveq2d | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( 1 S A ) ) = ( ( -u 1 S A ) G A ) ) |
| 20 | ax-1cn | |- 1 e. CC |
|
| 21 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
| 22 | 20 7 21 | addcomli | |- ( -u 1 + 1 ) = 0 |
| 23 | 22 | oveq1i | |- ( ( -u 1 + 1 ) S A ) = ( 0 S A ) |
| 24 | 1 2 3 | vcdir | |- ( ( W e. CVecOLD /\ ( -u 1 e. CC /\ 1 e. CC /\ A e. X ) ) -> ( ( -u 1 + 1 ) S A ) = ( ( -u 1 S A ) G ( 1 S A ) ) ) |
| 25 | 7 24 | mp3anr1 | |- ( ( W e. CVecOLD /\ ( 1 e. CC /\ A e. X ) ) -> ( ( -u 1 + 1 ) S A ) = ( ( -u 1 S A ) G ( 1 S A ) ) ) |
| 26 | 20 25 | mpanr1 | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 + 1 ) S A ) = ( ( -u 1 S A ) G ( 1 S A ) ) ) |
| 27 | 1 2 3 10 | vc0 | |- ( ( W e. CVecOLD /\ A e. X ) -> ( 0 S A ) = ( GId ` G ) ) |
| 28 | 23 26 27 | 3eqtr3a | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( 1 S A ) ) = ( GId ` G ) ) |
| 29 | 19 28 | eqtr3d | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G A ) = ( GId ` G ) ) |
| 30 | 29 | oveq1d | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( ( -u 1 S A ) G A ) G ( M ` A ) ) = ( ( GId ` G ) G ( M ` A ) ) ) |
| 31 | 17 30 | eqtr3d | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( A G ( M ` A ) ) ) = ( ( GId ` G ) G ( M ` A ) ) ) |
| 32 | 3 10 4 | grporinv | |- ( ( G e. GrpOp /\ A e. X ) -> ( A G ( M ` A ) ) = ( GId ` G ) ) |
| 33 | 5 32 | sylan | |- ( ( W e. CVecOLD /\ A e. X ) -> ( A G ( M ` A ) ) = ( GId ` G ) ) |
| 34 | 33 | oveq2d | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( A G ( M ` A ) ) ) = ( ( -u 1 S A ) G ( GId ` G ) ) ) |
| 35 | 31 34 | eqtr3d | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( GId ` G ) G ( M ` A ) ) = ( ( -u 1 S A ) G ( GId ` G ) ) ) |
| 36 | 3 10 | grpolid | |- ( ( G e. GrpOp /\ ( M ` A ) e. X ) -> ( ( GId ` G ) G ( M ` A ) ) = ( M ` A ) ) |
| 37 | 6 15 36 | syl2anc | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( GId ` G ) G ( M ` A ) ) = ( M ` A ) ) |
| 38 | 35 37 | eqtr3d | |- ( ( W e. CVecOLD /\ A e. X ) -> ( ( -u 1 S A ) G ( GId ` G ) ) = ( M ` A ) ) |
| 39 | 12 38 | eqtr3d | |- ( ( W e. CVecOLD /\ A e. X ) -> ( -u 1 S A ) = ( M ` A ) ) |