This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times a vector is the zero vector. Equation 1a of Kreyszig p. 51. (Contributed by NM, 4-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vc0.1 | ⊢ 𝐺 = ( 1st ‘ 𝑊 ) | |
| vc0.2 | ⊢ 𝑆 = ( 2nd ‘ 𝑊 ) | ||
| vc0.3 | ⊢ 𝑋 = ran 𝐺 | ||
| vc0.4 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | ||
| Assertion | vc0 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vc0.1 | ⊢ 𝐺 = ( 1st ‘ 𝑊 ) | |
| 2 | vc0.2 | ⊢ 𝑆 = ( 2nd ‘ 𝑊 ) | |
| 3 | vc0.3 | ⊢ 𝑋 = ran 𝐺 | |
| 4 | vc0.4 | ⊢ 𝑍 = ( GId ‘ 𝐺 ) | |
| 5 | 1 3 4 | vc0rid | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = 𝐴 ) |
| 6 | 1p0e1 | ⊢ ( 1 + 0 ) = 1 | |
| 7 | 6 | oveq1i | ⊢ ( ( 1 + 0 ) 𝑆 𝐴 ) = ( 1 𝑆 𝐴 ) |
| 8 | 0cn | ⊢ 0 ∈ ℂ | |
| 9 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 10 | 1 2 3 | vcdir | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + 0 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) ) |
| 11 | 9 10 | mp3anr1 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + 0 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) ) |
| 12 | 8 11 | mpanr1 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 + 0 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) ) |
| 13 | 1 2 3 | vcidOLD | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
| 14 | 7 12 13 | 3eqtr3a | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) = 𝐴 ) |
| 15 | 13 | oveq1d | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) = ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) ) ) |
| 16 | 5 14 15 | 3eqtr2rd | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) ) = ( 𝐴 𝐺 𝑍 ) ) |
| 17 | 1 2 3 | vccl | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) ∈ 𝑋 ) |
| 18 | 8 17 | mp3an2 | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) ∈ 𝑋 ) |
| 19 | 1 3 4 | vczcl | ⊢ ( 𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝑍 ∈ 𝑋 ) |
| 21 | simpr | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 22 | 18 20 21 | 3jca | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 0 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 23 | 1 3 | vclcan | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( ( 0 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) ) = ( 𝐴 𝐺 𝑍 ) ↔ ( 0 𝑆 𝐴 ) = 𝑍 ) ) |
| 24 | 22 23 | syldan | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) ) = ( 𝐴 𝐺 𝑍 ) ↔ ( 0 𝑆 𝐴 ) = 𝑍 ) ) |
| 25 | 16 24 | mpbid | ⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) = 𝑍 ) |