This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right inverse of a group element. (Contributed by NM, 27-Oct-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpinv.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| grpinv.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | ||
| Assertion | grporinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpinv.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | grpinv.3 | ⊢ 𝑁 = ( inv ‘ 𝐺 ) | |
| 4 | 1 2 3 | grpoinv | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ 𝐴 ) 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) ) |
| 5 | 4 | simprd | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 𝑁 ‘ 𝐴 ) ) = 𝑈 ) |