This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpoidval.1 | ⊢ 𝑋 = ran 𝐺 | |
| grpoidval.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | ||
| Assertion | grporid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑈 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpoidval.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | grpoidval.2 | ⊢ 𝑈 = ( GId ‘ 𝐺 ) | |
| 3 | 1 2 | grpoidinv2 | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑥 ) = 𝑈 ) ) ) |
| 4 | simplr | ⊢ ( ( ( ( 𝑈 𝐺 𝐴 ) = 𝐴 ∧ ( 𝐴 𝐺 𝑈 ) = 𝐴 ) ∧ ∃ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐺 𝐴 ) = 𝑈 ∧ ( 𝐴 𝐺 𝑥 ) = 𝑈 ) ) → ( 𝐴 𝐺 𝑈 ) = 𝐴 ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑈 ) = 𝐴 ) |