This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set is not an uniform structure. (Contributed by Thierry Arnoux, 3-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustn0 | ⊢ ¬ ∅ ∈ ∪ ran UnifOn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | ⊢ ¬ ( 𝑥 × 𝑥 ) ∈ ∅ | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | eleq2 | ⊢ ( 𝑢 = ∅ → ( ( 𝑥 × 𝑥 ) ∈ 𝑢 ↔ ( 𝑥 × 𝑥 ) ∈ ∅ ) ) | |
| 4 | 2 3 | elab | ⊢ ( ∅ ∈ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } ↔ ( 𝑥 × 𝑥 ) ∈ ∅ ) |
| 5 | 1 4 | mtbir | ⊢ ¬ ∅ ∈ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | velpw | ⊢ ( 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) ↔ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ) | |
| 8 | 7 | abbii | ⊢ { 𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) } = { 𝑢 ∣ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) } |
| 9 | abid2 | ⊢ { 𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) } = 𝒫 𝒫 ( 𝑥 × 𝑥 ) | |
| 10 | 6 6 | xpex | ⊢ ( 𝑥 × 𝑥 ) ∈ V |
| 11 | 10 | pwex | ⊢ 𝒫 ( 𝑥 × 𝑥 ) ∈ V |
| 12 | 11 | pwex | ⊢ 𝒫 𝒫 ( 𝑥 × 𝑥 ) ∈ V |
| 13 | 9 12 | eqeltri | ⊢ { 𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) } ∈ V |
| 14 | 8 13 | eqeltrri | ⊢ { 𝑢 ∣ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) } ∈ V |
| 15 | simp1 | ⊢ ( ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) → 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ) | |
| 16 | 15 | ss2abi | ⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ⊆ { 𝑢 ∣ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) } |
| 17 | 14 16 | ssexi | ⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ∈ V |
| 18 | df-ust | ⊢ UnifOn = ( 𝑥 ∈ V ↦ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) | |
| 19 | 18 | fvmpt2 | ⊢ ( ( 𝑥 ∈ V ∧ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ∈ V ) → ( UnifOn ‘ 𝑥 ) = { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) |
| 20 | 6 17 19 | mp2an | ⊢ ( UnifOn ‘ 𝑥 ) = { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } |
| 21 | simp2 | ⊢ ( ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) → ( 𝑥 × 𝑥 ) ∈ 𝑢 ) | |
| 22 | 21 | ss2abi | ⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ⊆ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } |
| 23 | 20 22 | eqsstri | ⊢ ( UnifOn ‘ 𝑥 ) ⊆ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } |
| 24 | 23 | sseli | ⊢ ( ∅ ∈ ( UnifOn ‘ 𝑥 ) → ∅ ∈ { 𝑢 ∣ ( 𝑥 × 𝑥 ) ∈ 𝑢 } ) |
| 25 | 5 24 | mto | ⊢ ¬ ∅ ∈ ( UnifOn ‘ 𝑥 ) |
| 26 | 25 | nex | ⊢ ¬ ∃ 𝑥 ∅ ∈ ( UnifOn ‘ 𝑥 ) |
| 27 | 18 | funmpt2 | ⊢ Fun UnifOn |
| 28 | elunirn | ⊢ ( Fun UnifOn → ( ∅ ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn ∅ ∈ ( UnifOn ‘ 𝑥 ) ) ) | |
| 29 | 27 28 | ax-mp | ⊢ ( ∅ ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∈ dom UnifOn ∅ ∈ ( UnifOn ‘ 𝑥 ) ) |
| 30 | ustfn | ⊢ UnifOn Fn V | |
| 31 | fndm | ⊢ ( UnifOn Fn V → dom UnifOn = V ) | |
| 32 | 30 31 | ax-mp | ⊢ dom UnifOn = V |
| 33 | 32 | rexeqi | ⊢ ( ∃ 𝑥 ∈ dom UnifOn ∅ ∈ ( UnifOn ‘ 𝑥 ) ↔ ∃ 𝑥 ∈ V ∅ ∈ ( UnifOn ‘ 𝑥 ) ) |
| 34 | rexv | ⊢ ( ∃ 𝑥 ∈ V ∅ ∈ ( UnifOn ‘ 𝑥 ) ↔ ∃ 𝑥 ∅ ∈ ( UnifOn ‘ 𝑥 ) ) | |
| 35 | 29 33 34 | 3bitri | ⊢ ( ∅ ∈ ∪ ran UnifOn ↔ ∃ 𝑥 ∅ ∈ ( UnifOn ‘ 𝑥 ) ) |
| 36 | 26 35 | mtbir | ⊢ ¬ ∅ ∈ ∪ ran UnifOn |