This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two intersecting sets A and B are both small in V , their union is small in ( V ^ 2 ) . Proposition 1 of BourbakiTop1 p. II.12. This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 17-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ustund.1 | ⊢ ( 𝜑 → ( 𝐴 × 𝐴 ) ⊆ 𝑉 ) | |
| ustund.2 | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ⊆ 𝑉 ) | ||
| ustund.3 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) | ||
| Assertion | ustund | ⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ⊆ ( 𝑉 ∘ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustund.1 | ⊢ ( 𝜑 → ( 𝐴 × 𝐴 ) ⊆ 𝑉 ) | |
| 2 | ustund.2 | ⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) ⊆ 𝑉 ) | |
| 3 | ustund.3 | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) ≠ ∅ ) | |
| 4 | xpco | ⊢ ( ( 𝐴 ∩ 𝐵 ) ≠ ∅ → ( ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ∘ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ∘ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ) = ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ) |
| 6 | xpundi | ⊢ ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) = ( ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) ∪ ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) ) | |
| 7 | xpindir | ⊢ ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) = ( ( 𝐴 × 𝐴 ) ∩ ( 𝐵 × 𝐴 ) ) | |
| 8 | inss1 | ⊢ ( ( 𝐴 × 𝐴 ) ∩ ( 𝐵 × 𝐴 ) ) ⊆ ( 𝐴 × 𝐴 ) | |
| 9 | 8 1 | sstrid | ⊢ ( 𝜑 → ( ( 𝐴 × 𝐴 ) ∩ ( 𝐵 × 𝐴 ) ) ⊆ 𝑉 ) |
| 10 | 7 9 | eqsstrid | ⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) ⊆ 𝑉 ) |
| 11 | xpindir | ⊢ ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) = ( ( 𝐴 × 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) | |
| 12 | inss2 | ⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ ( 𝐵 × 𝐵 ) | |
| 13 | 12 2 | sstrid | ⊢ ( 𝜑 → ( ( 𝐴 × 𝐵 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ 𝑉 ) |
| 14 | 11 13 | eqsstrid | ⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) ⊆ 𝑉 ) |
| 15 | 10 14 | unssd | ⊢ ( 𝜑 → ( ( ( 𝐴 ∩ 𝐵 ) × 𝐴 ) ∪ ( ( 𝐴 ∩ 𝐵 ) × 𝐵 ) ) ⊆ 𝑉 ) |
| 16 | 6 15 | eqsstrid | ⊢ ( 𝜑 → ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ⊆ 𝑉 ) |
| 17 | xpundir | ⊢ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) ) | |
| 18 | xpindi | ⊢ ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐴 × 𝐴 ) ∩ ( 𝐴 × 𝐵 ) ) | |
| 19 | inss1 | ⊢ ( ( 𝐴 × 𝐴 ) ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐴 ) | |
| 20 | 19 1 | sstrid | ⊢ ( 𝜑 → ( ( 𝐴 × 𝐴 ) ∩ ( 𝐴 × 𝐵 ) ) ⊆ 𝑉 ) |
| 21 | 18 20 | eqsstrid | ⊢ ( 𝜑 → ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝑉 ) |
| 22 | xpindi | ⊢ ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) = ( ( 𝐵 × 𝐴 ) ∩ ( 𝐵 × 𝐵 ) ) | |
| 23 | inss2 | ⊢ ( ( 𝐵 × 𝐴 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ ( 𝐵 × 𝐵 ) | |
| 24 | 23 2 | sstrid | ⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ∩ ( 𝐵 × 𝐵 ) ) ⊆ 𝑉 ) |
| 25 | 22 24 | eqsstrid | ⊢ ( 𝜑 → ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝑉 ) |
| 26 | 21 25 | unssd | ⊢ ( 𝜑 → ( ( 𝐴 × ( 𝐴 ∩ 𝐵 ) ) ∪ ( 𝐵 × ( 𝐴 ∩ 𝐵 ) ) ) ⊆ 𝑉 ) |
| 27 | 17 26 | eqsstrid | ⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ⊆ 𝑉 ) |
| 28 | 16 27 | coss12d | ⊢ ( 𝜑 → ( ( ( 𝐴 ∩ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ∘ ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∩ 𝐵 ) ) ) ⊆ ( 𝑉 ∘ 𝑉 ) ) |
| 29 | 5 28 | eqsstrrd | ⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) × ( 𝐴 ∪ 𝐵 ) ) ⊆ ( 𝑉 ∘ 𝑉 ) ) |