This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a uniform structure. Definition 1 of BourbakiTop1 p. II.1. A uniform structure is used to give a generalization of the idea of Cauchy's sequence. This definition is analogous to TopOn . Elements of an uniform structure are called entourages. (Contributed by FL, 29-May-2014) (Revised by Thierry Arnoux, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ust | ⊢ UnifOn = ( 𝑥 ∈ V ↦ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cust | ⊢ UnifOn | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cvv | ⊢ V | |
| 3 | vu | ⊢ 𝑢 | |
| 4 | 3 | cv | ⊢ 𝑢 |
| 5 | 1 | cv | ⊢ 𝑥 |
| 6 | 5 5 | cxp | ⊢ ( 𝑥 × 𝑥 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( 𝑥 × 𝑥 ) |
| 8 | 4 7 | wss | ⊢ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) |
| 9 | 6 4 | wcel | ⊢ ( 𝑥 × 𝑥 ) ∈ 𝑢 |
| 10 | vv | ⊢ 𝑣 | |
| 11 | vw | ⊢ 𝑤 | |
| 12 | 10 | cv | ⊢ 𝑣 |
| 13 | 11 | cv | ⊢ 𝑤 |
| 14 | 12 13 | wss | ⊢ 𝑣 ⊆ 𝑤 |
| 15 | 13 4 | wcel | ⊢ 𝑤 ∈ 𝑢 |
| 16 | 14 15 | wi | ⊢ ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) |
| 17 | 16 11 7 | wral | ⊢ ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) |
| 18 | 12 13 | cin | ⊢ ( 𝑣 ∩ 𝑤 ) |
| 19 | 18 4 | wcel | ⊢ ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 |
| 20 | 19 11 4 | wral | ⊢ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 |
| 21 | cid | ⊢ I | |
| 22 | 21 5 | cres | ⊢ ( I ↾ 𝑥 ) |
| 23 | 22 12 | wss | ⊢ ( I ↾ 𝑥 ) ⊆ 𝑣 |
| 24 | 12 | ccnv | ⊢ ◡ 𝑣 |
| 25 | 24 4 | wcel | ⊢ ◡ 𝑣 ∈ 𝑢 |
| 26 | 13 13 | ccom | ⊢ ( 𝑤 ∘ 𝑤 ) |
| 27 | 26 12 | wss | ⊢ ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 |
| 28 | 27 11 4 | wrex | ⊢ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 |
| 29 | 23 25 28 | w3a | ⊢ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) |
| 30 | 17 20 29 | w3a | ⊢ ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) |
| 31 | 30 10 4 | wral | ⊢ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) |
| 32 | 8 9 31 | w3a | ⊢ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) |
| 33 | 32 3 | cab | ⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } |
| 34 | 1 2 33 | cmpt | ⊢ ( 𝑥 ∈ V ↦ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) |
| 35 | 0 34 | wceq | ⊢ UnifOn = ( 𝑥 ∈ V ↦ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) |