This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defined uniform structure as a function. (Contributed by Thierry Arnoux, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustfn | ⊢ UnifOn Fn V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw | ⊢ ( 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) ↔ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ) | |
| 2 | 1 | abbii | ⊢ { 𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) } = { 𝑢 ∣ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) } |
| 3 | abid2 | ⊢ { 𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) } = 𝒫 𝒫 ( 𝑥 × 𝑥 ) | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 4 4 | xpex | ⊢ ( 𝑥 × 𝑥 ) ∈ V |
| 6 | 5 | pwex | ⊢ 𝒫 ( 𝑥 × 𝑥 ) ∈ V |
| 7 | 6 | pwex | ⊢ 𝒫 𝒫 ( 𝑥 × 𝑥 ) ∈ V |
| 8 | 3 7 | eqeltri | ⊢ { 𝑢 ∣ 𝑢 ∈ 𝒫 𝒫 ( 𝑥 × 𝑥 ) } ∈ V |
| 9 | 2 8 | eqeltrri | ⊢ { 𝑢 ∣ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) } ∈ V |
| 10 | simp1 | ⊢ ( ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) → 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ) | |
| 11 | 10 | ss2abi | ⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ⊆ { 𝑢 ∣ 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) } |
| 12 | 9 11 | ssexi | ⊢ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ∈ V |
| 13 | df-ust | ⊢ UnifOn = ( 𝑥 ∈ V ↦ { 𝑢 ∣ ( 𝑢 ⊆ 𝒫 ( 𝑥 × 𝑥 ) ∧ ( 𝑥 × 𝑥 ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( 𝑥 × 𝑥 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ 𝑥 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) } ) | |
| 14 | 12 13 | fnmpti | ⊢ UnifOn Fn V |