This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform structure on a nonempty base is a filter. Remark 3 of BourbakiTop1 p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustfilxp | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → 𝑈 ∈ ( Fil ‘ ( 𝑋 × 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | isust | ⊢ ( 𝑋 ∈ V → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) |
| 4 | 3 | ibi | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) |
| 6 | 5 | simp1d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 7 | 5 | simp2d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 ) |
| 8 | 7 | ne0d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → 𝑈 ≠ ∅ ) |
| 9 | 5 | simp3d | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ∀ 𝑣 ∈ 𝑈 ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) |
| 10 | 9 | r19.21bi | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → ( ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ∧ ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ∧ ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) |
| 11 | 10 | simp3d | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑈 ∧ ∃ 𝑤 ∈ 𝑈 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) |
| 12 | 11 | simp1d | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ⊆ 𝑣 ) |
| 13 | opelidres | ⊢ ( 𝑤 ∈ V → ( 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) ↔ 𝑤 ∈ 𝑋 ) ) | |
| 14 | 13 | elv | ⊢ ( 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) ↔ 𝑤 ∈ 𝑋 ) |
| 15 | 14 | biimpri | ⊢ ( 𝑤 ∈ 𝑋 → 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) ) |
| 16 | 15 | rgen | ⊢ ∀ 𝑤 ∈ 𝑋 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) |
| 17 | r19.2z | ⊢ ( ( 𝑋 ≠ ∅ ∧ ∀ 𝑤 ∈ 𝑋 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) ) → ∃ 𝑤 ∈ 𝑋 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) ) | |
| 18 | 16 17 | mpan2 | ⊢ ( 𝑋 ≠ ∅ → ∃ 𝑤 ∈ 𝑋 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) ) |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑤 ∈ 𝑋 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) ) |
| 20 | ne0i | ⊢ ( 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) → ( I ↾ 𝑋 ) ≠ ∅ ) | |
| 21 | 20 | rexlimivw | ⊢ ( ∃ 𝑤 ∈ 𝑋 〈 𝑤 , 𝑤 〉 ∈ ( I ↾ 𝑋 ) → ( I ↾ 𝑋 ) ≠ ∅ ) |
| 22 | 19 21 | syl | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → ( I ↾ 𝑋 ) ≠ ∅ ) |
| 23 | ssn0 | ⊢ ( ( ( I ↾ 𝑋 ) ⊆ 𝑣 ∧ ( I ↾ 𝑋 ) ≠ ∅ ) → 𝑣 ≠ ∅ ) | |
| 24 | 12 22 23 | syl2anc | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ≠ ∅ ) |
| 25 | 24 | nelrdva | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ¬ ∅ ∈ 𝑈 ) |
| 26 | df-nel | ⊢ ( ∅ ∉ 𝑈 ↔ ¬ ∅ ∈ 𝑈 ) | |
| 27 | 25 26 | sylibr | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ∅ ∉ 𝑈 ) |
| 28 | 10 | simp2d | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑤 ∈ 𝑈 ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ) |
| 29 | 28 | r19.21bi | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) → ( 𝑣 ∩ 𝑤 ) ∈ 𝑈 ) |
| 30 | vex | ⊢ 𝑤 ∈ V | |
| 31 | 30 | inex2 | ⊢ ( 𝑣 ∩ 𝑤 ) ∈ V |
| 32 | 31 | pwid | ⊢ ( 𝑣 ∩ 𝑤 ) ∈ 𝒫 ( 𝑣 ∩ 𝑤 ) |
| 33 | 32 | a1i | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) → ( 𝑣 ∩ 𝑤 ) ∈ 𝒫 ( 𝑣 ∩ 𝑤 ) ) |
| 34 | 29 33 | elind | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) → ( 𝑣 ∩ 𝑤 ) ∈ ( 𝑈 ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ) |
| 35 | 34 | ne0d | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝑈 ) → ( 𝑈 ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
| 36 | 35 | ralrimiva | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑤 ∈ 𝑈 ( 𝑈 ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
| 37 | 36 | ralrimiva | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝑈 ( 𝑈 ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) |
| 38 | 8 27 37 | 3jca | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ( 𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝑈 ( 𝑈 ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) ) |
| 39 | 1 1 | xpexd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ V ) |
| 40 | isfbas | ⊢ ( ( 𝑋 × 𝑋 ) ∈ V → ( 𝑈 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝑈 ( 𝑈 ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) ) ) ) | |
| 41 | 39 40 | syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑈 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝑈 ( 𝑈 ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) ) ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ( 𝑈 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ↔ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ ( 𝑈 ≠ ∅ ∧ ∅ ∉ 𝑈 ∧ ∀ 𝑣 ∈ 𝑈 ∀ 𝑤 ∈ 𝑈 ( 𝑈 ∩ 𝒫 ( 𝑣 ∩ 𝑤 ) ) ≠ ∅ ) ) ) ) |
| 43 | 6 38 42 | mpbir2and | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → 𝑈 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ) |
| 44 | n0 | ⊢ ( ( 𝑈 ∩ 𝒫 𝑤 ) ≠ ∅ ↔ ∃ 𝑣 𝑣 ∈ ( 𝑈 ∩ 𝒫 𝑤 ) ) | |
| 45 | elin | ⊢ ( 𝑣 ∈ ( 𝑈 ∩ 𝒫 𝑤 ) ↔ ( 𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝒫 𝑤 ) ) | |
| 46 | velpw | ⊢ ( 𝑣 ∈ 𝒫 𝑤 ↔ 𝑣 ⊆ 𝑤 ) | |
| 47 | 46 | anbi2i | ⊢ ( ( 𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝒫 𝑤 ) ↔ ( 𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤 ) ) |
| 48 | 45 47 | bitri | ⊢ ( 𝑣 ∈ ( 𝑈 ∩ 𝒫 𝑤 ) ↔ ( 𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤 ) ) |
| 49 | 48 | exbii | ⊢ ( ∃ 𝑣 𝑣 ∈ ( 𝑈 ∩ 𝒫 𝑤 ) ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤 ) ) |
| 50 | 44 49 | bitri | ⊢ ( ( 𝑈 ∩ 𝒫 𝑤 ) ≠ ∅ ↔ ∃ 𝑣 ( 𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤 ) ) |
| 51 | 10 | simp1d | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) |
| 52 | 51 | r19.21bi | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) → ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) |
| 53 | 52 | an32s | ⊢ ( ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑈 ) ) |
| 54 | 53 | expimpd | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) → ( ( 𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤 ) → 𝑤 ∈ 𝑈 ) ) |
| 55 | 54 | exlimdv | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) → ( ∃ 𝑣 ( 𝑣 ∈ 𝑈 ∧ 𝑣 ⊆ 𝑤 ) → 𝑤 ∈ 𝑈 ) ) |
| 56 | 50 55 | biimtrid | ⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) ∧ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) → ( ( 𝑈 ∩ 𝒫 𝑤 ) ≠ ∅ → 𝑤 ∈ 𝑈 ) ) |
| 57 | 56 | ralrimiva | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( ( 𝑈 ∩ 𝒫 𝑤 ) ≠ ∅ → 𝑤 ∈ 𝑈 ) ) |
| 58 | isfil | ⊢ ( 𝑈 ∈ ( Fil ‘ ( 𝑋 × 𝑋 ) ) ↔ ( 𝑈 ∈ ( fBas ‘ ( 𝑋 × 𝑋 ) ) ∧ ∀ 𝑤 ∈ 𝒫 ( 𝑋 × 𝑋 ) ( ( 𝑈 ∩ 𝒫 𝑤 ) ≠ ∅ → 𝑤 ∈ 𝑈 ) ) ) | |
| 59 | 43 57 58 | sylanbrc | ⊢ ( ( 𝑋 ≠ ∅ ∧ 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) → 𝑈 ∈ ( Fil ‘ ( 𝑋 × 𝑋 ) ) ) |