This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform structure on a nonempty base is a filter. Remark 3 of BourbakiTop1 p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustfilxp | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> U e. ( Fil ` ( X X. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | |- ( U e. ( UnifOn ` X ) -> X e. _V ) |
|
| 2 | isust | |- ( X e. _V -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( U e. ( UnifOn ` X ) -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
| 4 | 3 | ibi | |- ( U e. ( UnifOn ` X ) -> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) |
| 5 | 4 | adantl | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) |
| 6 | 5 | simp1d | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> U C_ ~P ( X X. X ) ) |
| 7 | 5 | simp2d | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> ( X X. X ) e. U ) |
| 8 | 7 | ne0d | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> U =/= (/) ) |
| 9 | 5 | simp3d | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) |
| 10 | 9 | r19.21bi | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) |
| 11 | 10 | simp3d | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) |
| 12 | 11 | simp1d | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> ( _I |` X ) C_ v ) |
| 13 | opelidres | |- ( w e. _V -> ( <. w , w >. e. ( _I |` X ) <-> w e. X ) ) |
|
| 14 | 13 | elv | |- ( <. w , w >. e. ( _I |` X ) <-> w e. X ) |
| 15 | 14 | biimpri | |- ( w e. X -> <. w , w >. e. ( _I |` X ) ) |
| 16 | 15 | rgen | |- A. w e. X <. w , w >. e. ( _I |` X ) |
| 17 | r19.2z | |- ( ( X =/= (/) /\ A. w e. X <. w , w >. e. ( _I |` X ) ) -> E. w e. X <. w , w >. e. ( _I |` X ) ) |
|
| 18 | 16 17 | mpan2 | |- ( X =/= (/) -> E. w e. X <. w , w >. e. ( _I |` X ) ) |
| 19 | 18 | ad2antrr | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> E. w e. X <. w , w >. e. ( _I |` X ) ) |
| 20 | ne0i | |- ( <. w , w >. e. ( _I |` X ) -> ( _I |` X ) =/= (/) ) |
|
| 21 | 20 | rexlimivw | |- ( E. w e. X <. w , w >. e. ( _I |` X ) -> ( _I |` X ) =/= (/) ) |
| 22 | 19 21 | syl | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> ( _I |` X ) =/= (/) ) |
| 23 | ssn0 | |- ( ( ( _I |` X ) C_ v /\ ( _I |` X ) =/= (/) ) -> v =/= (/) ) |
|
| 24 | 12 22 23 | syl2anc | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> v =/= (/) ) |
| 25 | 24 | nelrdva | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> -. (/) e. U ) |
| 26 | df-nel | |- ( (/) e/ U <-> -. (/) e. U ) |
|
| 27 | 25 26 | sylibr | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> (/) e/ U ) |
| 28 | 10 | simp2d | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> A. w e. U ( v i^i w ) e. U ) |
| 29 | 28 | r19.21bi | |- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. U ) -> ( v i^i w ) e. U ) |
| 30 | vex | |- w e. _V |
|
| 31 | 30 | inex2 | |- ( v i^i w ) e. _V |
| 32 | 31 | pwid | |- ( v i^i w ) e. ~P ( v i^i w ) |
| 33 | 32 | a1i | |- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. U ) -> ( v i^i w ) e. ~P ( v i^i w ) ) |
| 34 | 29 33 | elind | |- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. U ) -> ( v i^i w ) e. ( U i^i ~P ( v i^i w ) ) ) |
| 35 | 34 | ne0d | |- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. U ) -> ( U i^i ~P ( v i^i w ) ) =/= (/) ) |
| 36 | 35 | ralrimiva | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) |
| 37 | 36 | ralrimiva | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) |
| 38 | 8 27 37 | 3jca | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> ( U =/= (/) /\ (/) e/ U /\ A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) ) |
| 39 | 1 1 | xpexd | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) e. _V ) |
| 40 | isfbas | |- ( ( X X. X ) e. _V -> ( U e. ( fBas ` ( X X. X ) ) <-> ( U C_ ~P ( X X. X ) /\ ( U =/= (/) /\ (/) e/ U /\ A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) ) ) ) |
|
| 41 | 39 40 | syl | |- ( U e. ( UnifOn ` X ) -> ( U e. ( fBas ` ( X X. X ) ) <-> ( U C_ ~P ( X X. X ) /\ ( U =/= (/) /\ (/) e/ U /\ A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) ) ) ) |
| 42 | 41 | adantl | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> ( U e. ( fBas ` ( X X. X ) ) <-> ( U C_ ~P ( X X. X ) /\ ( U =/= (/) /\ (/) e/ U /\ A. v e. U A. w e. U ( U i^i ~P ( v i^i w ) ) =/= (/) ) ) ) ) |
| 43 | 6 38 42 | mpbir2and | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> U e. ( fBas ` ( X X. X ) ) ) |
| 44 | n0 | |- ( ( U i^i ~P w ) =/= (/) <-> E. v v e. ( U i^i ~P w ) ) |
|
| 45 | elin | |- ( v e. ( U i^i ~P w ) <-> ( v e. U /\ v e. ~P w ) ) |
|
| 46 | velpw | |- ( v e. ~P w <-> v C_ w ) |
|
| 47 | 46 | anbi2i | |- ( ( v e. U /\ v e. ~P w ) <-> ( v e. U /\ v C_ w ) ) |
| 48 | 45 47 | bitri | |- ( v e. ( U i^i ~P w ) <-> ( v e. U /\ v C_ w ) ) |
| 49 | 48 | exbii | |- ( E. v v e. ( U i^i ~P w ) <-> E. v ( v e. U /\ v C_ w ) ) |
| 50 | 44 49 | bitri | |- ( ( U i^i ~P w ) =/= (/) <-> E. v ( v e. U /\ v C_ w ) ) |
| 51 | 10 | simp1d | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) -> A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) ) |
| 52 | 51 | r19.21bi | |- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ v e. U ) /\ w e. ~P ( X X. X ) ) -> ( v C_ w -> w e. U ) ) |
| 53 | 52 | an32s | |- ( ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ w e. ~P ( X X. X ) ) /\ v e. U ) -> ( v C_ w -> w e. U ) ) |
| 54 | 53 | expimpd | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ w e. ~P ( X X. X ) ) -> ( ( v e. U /\ v C_ w ) -> w e. U ) ) |
| 55 | 54 | exlimdv | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ w e. ~P ( X X. X ) ) -> ( E. v ( v e. U /\ v C_ w ) -> w e. U ) ) |
| 56 | 50 55 | biimtrid | |- ( ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) /\ w e. ~P ( X X. X ) ) -> ( ( U i^i ~P w ) =/= (/) -> w e. U ) ) |
| 57 | 56 | ralrimiva | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> A. w e. ~P ( X X. X ) ( ( U i^i ~P w ) =/= (/) -> w e. U ) ) |
| 58 | isfil | |- ( U e. ( Fil ` ( X X. X ) ) <-> ( U e. ( fBas ` ( X X. X ) ) /\ A. w e. ~P ( X X. X ) ( ( U i^i ~P w ) =/= (/) -> w e. U ) ) ) |
|
| 59 | 43 57 58 | sylanbrc | |- ( ( X =/= (/) /\ U e. ( UnifOn ` X ) ) -> U e. ( Fil ` ( X X. X ) ) ) |