This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unique uniform structure of the empty set is the empty set. Remark 3 of BourbakiTop1 p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ust0 | ⊢ ( UnifOn ‘ ∅ ) = { { ∅ } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | ⊢ ∅ ∈ V | |
| 2 | isust | ⊢ ( ∅ ∈ V → ( 𝑢 ∈ ( UnifOn ‘ ∅ ) ↔ ( 𝑢 ⊆ 𝒫 ( ∅ × ∅ ) ∧ ( ∅ × ∅ ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ ∅ ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝑢 ∈ ( UnifOn ‘ ∅ ) ↔ ( 𝑢 ⊆ 𝒫 ( ∅ × ∅ ) ∧ ( ∅ × ∅ ) ∈ 𝑢 ∧ ∀ 𝑣 ∈ 𝑢 ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢 ) ∧ ∀ 𝑤 ∈ 𝑢 ( 𝑣 ∩ 𝑤 ) ∈ 𝑢 ∧ ( ( I ↾ ∅ ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝑢 ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) |
| 4 | 3 | simp1bi | ⊢ ( 𝑢 ∈ ( UnifOn ‘ ∅ ) → 𝑢 ⊆ 𝒫 ( ∅ × ∅ ) ) |
| 5 | 0xp | ⊢ ( ∅ × ∅ ) = ∅ | |
| 6 | 5 | pweqi | ⊢ 𝒫 ( ∅ × ∅ ) = 𝒫 ∅ |
| 7 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 8 | 6 7 | eqtri | ⊢ 𝒫 ( ∅ × ∅ ) = { ∅ } |
| 9 | 4 8 | sseqtrdi | ⊢ ( 𝑢 ∈ ( UnifOn ‘ ∅ ) → 𝑢 ⊆ { ∅ } ) |
| 10 | ustbasel | ⊢ ( 𝑢 ∈ ( UnifOn ‘ ∅ ) → ( ∅ × ∅ ) ∈ 𝑢 ) | |
| 11 | 5 10 | eqeltrrid | ⊢ ( 𝑢 ∈ ( UnifOn ‘ ∅ ) → ∅ ∈ 𝑢 ) |
| 12 | 11 | snssd | ⊢ ( 𝑢 ∈ ( UnifOn ‘ ∅ ) → { ∅ } ⊆ 𝑢 ) |
| 13 | 9 12 | eqssd | ⊢ ( 𝑢 ∈ ( UnifOn ‘ ∅ ) → 𝑢 = { ∅ } ) |
| 14 | velsn | ⊢ ( 𝑢 ∈ { { ∅ } } ↔ 𝑢 = { ∅ } ) | |
| 15 | 13 14 | sylibr | ⊢ ( 𝑢 ∈ ( UnifOn ‘ ∅ ) → 𝑢 ∈ { { ∅ } } ) |
| 16 | 15 | ssriv | ⊢ ( UnifOn ‘ ∅ ) ⊆ { { ∅ } } |
| 17 | 8 | eqimss2i | ⊢ { ∅ } ⊆ 𝒫 ( ∅ × ∅ ) |
| 18 | 1 | snid | ⊢ ∅ ∈ { ∅ } |
| 19 | 5 18 | eqeltri | ⊢ ( ∅ × ∅ ) ∈ { ∅ } |
| 20 | 18 | a1i | ⊢ ( ∅ ⊆ ∅ → ∅ ∈ { ∅ } ) |
| 21 | 8 | raleqi | ⊢ ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ↔ ∀ 𝑤 ∈ { ∅ } ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ) |
| 22 | sseq2 | ⊢ ( 𝑤 = ∅ → ( ∅ ⊆ 𝑤 ↔ ∅ ⊆ ∅ ) ) | |
| 23 | eleq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ∈ { ∅ } ↔ ∅ ∈ { ∅ } ) ) | |
| 24 | 22 23 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ↔ ( ∅ ⊆ ∅ → ∅ ∈ { ∅ } ) ) ) |
| 25 | 1 24 | ralsn | ⊢ ( ∀ 𝑤 ∈ { ∅ } ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ↔ ( ∅ ⊆ ∅ → ∅ ∈ { ∅ } ) ) |
| 26 | 21 25 | bitri | ⊢ ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ↔ ( ∅ ⊆ ∅ → ∅ ∈ { ∅ } ) ) |
| 27 | 20 26 | mpbir | ⊢ ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) |
| 28 | inidm | ⊢ ( ∅ ∩ ∅ ) = ∅ | |
| 29 | 28 18 | eqeltri | ⊢ ( ∅ ∩ ∅ ) ∈ { ∅ } |
| 30 | ineq2 | ⊢ ( 𝑤 = ∅ → ( ∅ ∩ 𝑤 ) = ( ∅ ∩ ∅ ) ) | |
| 31 | 30 | eleq1d | ⊢ ( 𝑤 = ∅ → ( ( ∅ ∩ 𝑤 ) ∈ { ∅ } ↔ ( ∅ ∩ ∅ ) ∈ { ∅ } ) ) |
| 32 | 1 31 | ralsn | ⊢ ( ∀ 𝑤 ∈ { ∅ } ( ∅ ∩ 𝑤 ) ∈ { ∅ } ↔ ( ∅ ∩ ∅ ) ∈ { ∅ } ) |
| 33 | 29 32 | mpbir | ⊢ ∀ 𝑤 ∈ { ∅ } ( ∅ ∩ 𝑤 ) ∈ { ∅ } |
| 34 | res0 | ⊢ ( I ↾ ∅ ) = ∅ | |
| 35 | 34 | eqimssi | ⊢ ( I ↾ ∅ ) ⊆ ∅ |
| 36 | cnv0 | ⊢ ◡ ∅ = ∅ | |
| 37 | 36 18 | eqeltri | ⊢ ◡ ∅ ∈ { ∅ } |
| 38 | 0trrel | ⊢ ( ∅ ∘ ∅ ) ⊆ ∅ | |
| 39 | id | ⊢ ( 𝑤 = ∅ → 𝑤 = ∅ ) | |
| 40 | 39 39 | coeq12d | ⊢ ( 𝑤 = ∅ → ( 𝑤 ∘ 𝑤 ) = ( ∅ ∘ ∅ ) ) |
| 41 | 40 | sseq1d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ∘ 𝑤 ) ⊆ ∅ ↔ ( ∅ ∘ ∅ ) ⊆ ∅ ) ) |
| 42 | 1 41 | rexsn | ⊢ ( ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ ∅ ↔ ( ∅ ∘ ∅ ) ⊆ ∅ ) |
| 43 | 38 42 | mpbir | ⊢ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ ∅ |
| 44 | 35 37 43 | 3pm3.2i | ⊢ ( ( I ↾ ∅ ) ⊆ ∅ ∧ ◡ ∅ ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ ∅ ) |
| 45 | sseq1 | ⊢ ( 𝑣 = ∅ → ( 𝑣 ⊆ 𝑤 ↔ ∅ ⊆ 𝑤 ) ) | |
| 46 | 45 | imbi1d | ⊢ ( 𝑣 = ∅ → ( ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ↔ ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ) ) |
| 47 | 46 | ralbidv | ⊢ ( 𝑣 = ∅ → ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ↔ ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ) ) |
| 48 | ineq1 | ⊢ ( 𝑣 = ∅ → ( 𝑣 ∩ 𝑤 ) = ( ∅ ∩ 𝑤 ) ) | |
| 49 | 48 | eleq1d | ⊢ ( 𝑣 = ∅ → ( ( 𝑣 ∩ 𝑤 ) ∈ { ∅ } ↔ ( ∅ ∩ 𝑤 ) ∈ { ∅ } ) ) |
| 50 | 49 | ralbidv | ⊢ ( 𝑣 = ∅ → ( ∀ 𝑤 ∈ { ∅ } ( 𝑣 ∩ 𝑤 ) ∈ { ∅ } ↔ ∀ 𝑤 ∈ { ∅ } ( ∅ ∩ 𝑤 ) ∈ { ∅ } ) ) |
| 51 | sseq2 | ⊢ ( 𝑣 = ∅ → ( ( I ↾ ∅ ) ⊆ 𝑣 ↔ ( I ↾ ∅ ) ⊆ ∅ ) ) | |
| 52 | cnveq | ⊢ ( 𝑣 = ∅ → ◡ 𝑣 = ◡ ∅ ) | |
| 53 | 52 | eleq1d | ⊢ ( 𝑣 = ∅ → ( ◡ 𝑣 ∈ { ∅ } ↔ ◡ ∅ ∈ { ∅ } ) ) |
| 54 | sseq2 | ⊢ ( 𝑣 = ∅ → ( ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ↔ ( 𝑤 ∘ 𝑤 ) ⊆ ∅ ) ) | |
| 55 | 54 | rexbidv | ⊢ ( 𝑣 = ∅ → ( ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ↔ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ ∅ ) ) |
| 56 | 51 53 55 | 3anbi123d | ⊢ ( 𝑣 = ∅ → ( ( ( I ↾ ∅ ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ↔ ( ( I ↾ ∅ ) ⊆ ∅ ∧ ◡ ∅ ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ ∅ ) ) ) |
| 57 | 47 50 56 | 3anbi123d | ⊢ ( 𝑣 = ∅ → ( ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ∧ ∀ 𝑤 ∈ { ∅ } ( 𝑣 ∩ 𝑤 ) ∈ { ∅ } ∧ ( ( I ↾ ∅ ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ∧ ∀ 𝑤 ∈ { ∅ } ( ∅ ∩ 𝑤 ) ∈ { ∅ } ∧ ( ( I ↾ ∅ ) ⊆ ∅ ∧ ◡ ∅ ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ ∅ ) ) ) ) |
| 58 | 1 57 | ralsn | ⊢ ( ∀ 𝑣 ∈ { ∅ } ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ∧ ∀ 𝑤 ∈ { ∅ } ( 𝑣 ∩ 𝑤 ) ∈ { ∅ } ∧ ( ( I ↾ ∅ ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ↔ ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( ∅ ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ∧ ∀ 𝑤 ∈ { ∅ } ( ∅ ∩ 𝑤 ) ∈ { ∅ } ∧ ( ( I ↾ ∅ ) ⊆ ∅ ∧ ◡ ∅ ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ ∅ ) ) ) |
| 59 | 27 33 44 58 | mpbir3an | ⊢ ∀ 𝑣 ∈ { ∅ } ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ∧ ∀ 𝑤 ∈ { ∅ } ( 𝑣 ∩ 𝑤 ) ∈ { ∅ } ∧ ( ( I ↾ ∅ ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) |
| 60 | isust | ⊢ ( ∅ ∈ V → ( { ∅ } ∈ ( UnifOn ‘ ∅ ) ↔ ( { ∅ } ⊆ 𝒫 ( ∅ × ∅ ) ∧ ( ∅ × ∅ ) ∈ { ∅ } ∧ ∀ 𝑣 ∈ { ∅ } ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ∧ ∀ 𝑤 ∈ { ∅ } ( 𝑣 ∩ 𝑤 ) ∈ { ∅ } ∧ ( ( I ↾ ∅ ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) ) | |
| 61 | 1 60 | ax-mp | ⊢ ( { ∅ } ∈ ( UnifOn ‘ ∅ ) ↔ ( { ∅ } ⊆ 𝒫 ( ∅ × ∅ ) ∧ ( ∅ × ∅ ) ∈ { ∅ } ∧ ∀ 𝑣 ∈ { ∅ } ( ∀ 𝑤 ∈ 𝒫 ( ∅ × ∅ ) ( 𝑣 ⊆ 𝑤 → 𝑤 ∈ { ∅ } ) ∧ ∀ 𝑤 ∈ { ∅ } ( 𝑣 ∩ 𝑤 ) ∈ { ∅ } ∧ ( ( I ↾ ∅ ) ⊆ 𝑣 ∧ ◡ 𝑣 ∈ { ∅ } ∧ ∃ 𝑤 ∈ { ∅ } ( 𝑤 ∘ 𝑤 ) ⊆ 𝑣 ) ) ) ) |
| 62 | 17 19 59 61 | mpbir3an | ⊢ { ∅ } ∈ ( UnifOn ‘ ∅ ) |
| 63 | snssi | ⊢ ( { ∅ } ∈ ( UnifOn ‘ ∅ ) → { { ∅ } } ⊆ ( UnifOn ‘ ∅ ) ) | |
| 64 | 62 63 | ax-mp | ⊢ { { ∅ } } ⊆ ( UnifOn ‘ ∅ ) |
| 65 | 16 64 | eqssi | ⊢ ( UnifOn ‘ ∅ ) = { { ∅ } } |