This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unique uniform structure of the empty set is the empty set. Remark 3 of BourbakiTop1 p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ust0 | |- ( UnifOn ` (/) ) = { { (/) } } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex | |- (/) e. _V |
|
| 2 | isust | |- ( (/) e. _V -> ( u e. ( UnifOn ` (/) ) <-> ( u C_ ~P ( (/) X. (/) ) /\ ( (/) X. (/) ) e. u /\ A. v e. u ( A. w e. ~P ( (/) X. (/) ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` (/) ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( u e. ( UnifOn ` (/) ) <-> ( u C_ ~P ( (/) X. (/) ) /\ ( (/) X. (/) ) e. u /\ A. v e. u ( A. w e. ~P ( (/) X. (/) ) ( v C_ w -> w e. u ) /\ A. w e. u ( v i^i w ) e. u /\ ( ( _I |` (/) ) C_ v /\ `' v e. u /\ E. w e. u ( w o. w ) C_ v ) ) ) ) |
| 4 | 3 | simp1bi | |- ( u e. ( UnifOn ` (/) ) -> u C_ ~P ( (/) X. (/) ) ) |
| 5 | 0xp | |- ( (/) X. (/) ) = (/) |
|
| 6 | 5 | pweqi | |- ~P ( (/) X. (/) ) = ~P (/) |
| 7 | pw0 | |- ~P (/) = { (/) } |
|
| 8 | 6 7 | eqtri | |- ~P ( (/) X. (/) ) = { (/) } |
| 9 | 4 8 | sseqtrdi | |- ( u e. ( UnifOn ` (/) ) -> u C_ { (/) } ) |
| 10 | ustbasel | |- ( u e. ( UnifOn ` (/) ) -> ( (/) X. (/) ) e. u ) |
|
| 11 | 5 10 | eqeltrrid | |- ( u e. ( UnifOn ` (/) ) -> (/) e. u ) |
| 12 | 11 | snssd | |- ( u e. ( UnifOn ` (/) ) -> { (/) } C_ u ) |
| 13 | 9 12 | eqssd | |- ( u e. ( UnifOn ` (/) ) -> u = { (/) } ) |
| 14 | velsn | |- ( u e. { { (/) } } <-> u = { (/) } ) |
|
| 15 | 13 14 | sylibr | |- ( u e. ( UnifOn ` (/) ) -> u e. { { (/) } } ) |
| 16 | 15 | ssriv | |- ( UnifOn ` (/) ) C_ { { (/) } } |
| 17 | 8 | eqimss2i | |- { (/) } C_ ~P ( (/) X. (/) ) |
| 18 | 1 | snid | |- (/) e. { (/) } |
| 19 | 5 18 | eqeltri | |- ( (/) X. (/) ) e. { (/) } |
| 20 | 18 | a1i | |- ( (/) C_ (/) -> (/) e. { (/) } ) |
| 21 | 8 | raleqi | |- ( A. w e. ~P ( (/) X. (/) ) ( (/) C_ w -> w e. { (/) } ) <-> A. w e. { (/) } ( (/) C_ w -> w e. { (/) } ) ) |
| 22 | sseq2 | |- ( w = (/) -> ( (/) C_ w <-> (/) C_ (/) ) ) |
|
| 23 | eleq1 | |- ( w = (/) -> ( w e. { (/) } <-> (/) e. { (/) } ) ) |
|
| 24 | 22 23 | imbi12d | |- ( w = (/) -> ( ( (/) C_ w -> w e. { (/) } ) <-> ( (/) C_ (/) -> (/) e. { (/) } ) ) ) |
| 25 | 1 24 | ralsn | |- ( A. w e. { (/) } ( (/) C_ w -> w e. { (/) } ) <-> ( (/) C_ (/) -> (/) e. { (/) } ) ) |
| 26 | 21 25 | bitri | |- ( A. w e. ~P ( (/) X. (/) ) ( (/) C_ w -> w e. { (/) } ) <-> ( (/) C_ (/) -> (/) e. { (/) } ) ) |
| 27 | 20 26 | mpbir | |- A. w e. ~P ( (/) X. (/) ) ( (/) C_ w -> w e. { (/) } ) |
| 28 | inidm | |- ( (/) i^i (/) ) = (/) |
|
| 29 | 28 18 | eqeltri | |- ( (/) i^i (/) ) e. { (/) } |
| 30 | ineq2 | |- ( w = (/) -> ( (/) i^i w ) = ( (/) i^i (/) ) ) |
|
| 31 | 30 | eleq1d | |- ( w = (/) -> ( ( (/) i^i w ) e. { (/) } <-> ( (/) i^i (/) ) e. { (/) } ) ) |
| 32 | 1 31 | ralsn | |- ( A. w e. { (/) } ( (/) i^i w ) e. { (/) } <-> ( (/) i^i (/) ) e. { (/) } ) |
| 33 | 29 32 | mpbir | |- A. w e. { (/) } ( (/) i^i w ) e. { (/) } |
| 34 | res0 | |- ( _I |` (/) ) = (/) |
|
| 35 | 34 | eqimssi | |- ( _I |` (/) ) C_ (/) |
| 36 | cnv0 | |- `' (/) = (/) |
|
| 37 | 36 18 | eqeltri | |- `' (/) e. { (/) } |
| 38 | 0trrel | |- ( (/) o. (/) ) C_ (/) |
|
| 39 | id | |- ( w = (/) -> w = (/) ) |
|
| 40 | 39 39 | coeq12d | |- ( w = (/) -> ( w o. w ) = ( (/) o. (/) ) ) |
| 41 | 40 | sseq1d | |- ( w = (/) -> ( ( w o. w ) C_ (/) <-> ( (/) o. (/) ) C_ (/) ) ) |
| 42 | 1 41 | rexsn | |- ( E. w e. { (/) } ( w o. w ) C_ (/) <-> ( (/) o. (/) ) C_ (/) ) |
| 43 | 38 42 | mpbir | |- E. w e. { (/) } ( w o. w ) C_ (/) |
| 44 | 35 37 43 | 3pm3.2i | |- ( ( _I |` (/) ) C_ (/) /\ `' (/) e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ (/) ) |
| 45 | sseq1 | |- ( v = (/) -> ( v C_ w <-> (/) C_ w ) ) |
|
| 46 | 45 | imbi1d | |- ( v = (/) -> ( ( v C_ w -> w e. { (/) } ) <-> ( (/) C_ w -> w e. { (/) } ) ) ) |
| 47 | 46 | ralbidv | |- ( v = (/) -> ( A. w e. ~P ( (/) X. (/) ) ( v C_ w -> w e. { (/) } ) <-> A. w e. ~P ( (/) X. (/) ) ( (/) C_ w -> w e. { (/) } ) ) ) |
| 48 | ineq1 | |- ( v = (/) -> ( v i^i w ) = ( (/) i^i w ) ) |
|
| 49 | 48 | eleq1d | |- ( v = (/) -> ( ( v i^i w ) e. { (/) } <-> ( (/) i^i w ) e. { (/) } ) ) |
| 50 | 49 | ralbidv | |- ( v = (/) -> ( A. w e. { (/) } ( v i^i w ) e. { (/) } <-> A. w e. { (/) } ( (/) i^i w ) e. { (/) } ) ) |
| 51 | sseq2 | |- ( v = (/) -> ( ( _I |` (/) ) C_ v <-> ( _I |` (/) ) C_ (/) ) ) |
|
| 52 | cnveq | |- ( v = (/) -> `' v = `' (/) ) |
|
| 53 | 52 | eleq1d | |- ( v = (/) -> ( `' v e. { (/) } <-> `' (/) e. { (/) } ) ) |
| 54 | sseq2 | |- ( v = (/) -> ( ( w o. w ) C_ v <-> ( w o. w ) C_ (/) ) ) |
|
| 55 | 54 | rexbidv | |- ( v = (/) -> ( E. w e. { (/) } ( w o. w ) C_ v <-> E. w e. { (/) } ( w o. w ) C_ (/) ) ) |
| 56 | 51 53 55 | 3anbi123d | |- ( v = (/) -> ( ( ( _I |` (/) ) C_ v /\ `' v e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ v ) <-> ( ( _I |` (/) ) C_ (/) /\ `' (/) e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ (/) ) ) ) |
| 57 | 47 50 56 | 3anbi123d | |- ( v = (/) -> ( ( A. w e. ~P ( (/) X. (/) ) ( v C_ w -> w e. { (/) } ) /\ A. w e. { (/) } ( v i^i w ) e. { (/) } /\ ( ( _I |` (/) ) C_ v /\ `' v e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ v ) ) <-> ( A. w e. ~P ( (/) X. (/) ) ( (/) C_ w -> w e. { (/) } ) /\ A. w e. { (/) } ( (/) i^i w ) e. { (/) } /\ ( ( _I |` (/) ) C_ (/) /\ `' (/) e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ (/) ) ) ) ) |
| 58 | 1 57 | ralsn | |- ( A. v e. { (/) } ( A. w e. ~P ( (/) X. (/) ) ( v C_ w -> w e. { (/) } ) /\ A. w e. { (/) } ( v i^i w ) e. { (/) } /\ ( ( _I |` (/) ) C_ v /\ `' v e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ v ) ) <-> ( A. w e. ~P ( (/) X. (/) ) ( (/) C_ w -> w e. { (/) } ) /\ A. w e. { (/) } ( (/) i^i w ) e. { (/) } /\ ( ( _I |` (/) ) C_ (/) /\ `' (/) e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ (/) ) ) ) |
| 59 | 27 33 44 58 | mpbir3an | |- A. v e. { (/) } ( A. w e. ~P ( (/) X. (/) ) ( v C_ w -> w e. { (/) } ) /\ A. w e. { (/) } ( v i^i w ) e. { (/) } /\ ( ( _I |` (/) ) C_ v /\ `' v e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ v ) ) |
| 60 | isust | |- ( (/) e. _V -> ( { (/) } e. ( UnifOn ` (/) ) <-> ( { (/) } C_ ~P ( (/) X. (/) ) /\ ( (/) X. (/) ) e. { (/) } /\ A. v e. { (/) } ( A. w e. ~P ( (/) X. (/) ) ( v C_ w -> w e. { (/) } ) /\ A. w e. { (/) } ( v i^i w ) e. { (/) } /\ ( ( _I |` (/) ) C_ v /\ `' v e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ v ) ) ) ) ) |
|
| 61 | 1 60 | ax-mp | |- ( { (/) } e. ( UnifOn ` (/) ) <-> ( { (/) } C_ ~P ( (/) X. (/) ) /\ ( (/) X. (/) ) e. { (/) } /\ A. v e. { (/) } ( A. w e. ~P ( (/) X. (/) ) ( v C_ w -> w e. { (/) } ) /\ A. w e. { (/) } ( v i^i w ) e. { (/) } /\ ( ( _I |` (/) ) C_ v /\ `' v e. { (/) } /\ E. w e. { (/) } ( w o. w ) C_ v ) ) ) ) |
| 62 | 17 19 59 61 | mpbir3an | |- { (/) } e. ( UnifOn ` (/) ) |
| 63 | snssi | |- ( { (/) } e. ( UnifOn ` (/) ) -> { { (/) } } C_ ( UnifOn ` (/) ) ) |
|
| 64 | 62 63 | ax-mp | |- { { (/) } } C_ ( UnifOn ` (/) ) |
| 65 | 16 64 | eqssi | |- ( UnifOn ` (/) ) = { { (/) } } |